Glucocorticosteroids and Postradiation Macular Edema: Rationale for Choice of Therapy and Efficacy of Use
https://doi.org/10.18008/1816-5095-2024-3-533-539
Abstract
Purpose. To substantiate and study the effectiveness of intravitreal injection of dexamethasone implant (“Ozurdex”) based on OCT study of morphostructural biomarkers of post-radiation macular edema (PMO) in different terms of its detection.
Patients and methods. 28 patients with PMO after Ru-106 ± Rh-106 (BT) brachytherapy for choroidal melanoma (CM). Study group (IG 1) — 18 patients with PMO detected up to 9 months after BT, IG 2 — 10 patients with PMO detected 9 months or more after BT. OCT parameters studied: height of foveolar and parafoveolar zones, presence of neuroepithelium detachment, disorganization of inner layers, hyperreflective foci, pigment epithelium atrophy, as well as the form of edema (diffuse, cystic) and ellipsoid zone disorder. Intravitreal injections of dexamethasone implant (“Ozurdex”) were used as drug therapy of PMO.
The results showed that OCT morphostructural changes such as neuroepithelial detachment were significantly more frequent in patients with PMO diagnosed before 9 months, while hyperreflective foci, disorganization of the inner retinal layers, and ellipsoid zone disorder were more frequent in the comparison group. At the same time, there was no statistically significant difference in the macular and parafoveal edema height, frequency of edema form and presence of such a sign as pigment epithelium atrophy in both groups. Evaluation of the efficacy of intravitreal injection of “Ozurdex” implant in both groups showed that after 1–2 months from the beginning of treatment in the group with early detection of PMO complete regression was obtained in all patients, while in the second studied group complete regression occurred only in one third of patients. The regression of PMO was accompanied by improvement of BCVA in the first group from 0.4 to 0.7, in the second group — from 0.3 to 0.6. Out of 28 patients, 3 patients required re-injection of the implant in average 11 months after the first injection.
Conclusion. The OCT biomarkers of PMO should be considered in treatment planning and subsequent dynamic follow-up. Early diagnosis of PMO, as well as the use of intravitreal dexamethasone implant (“Ozurdex”) determines high efficiency of treatment and maximum visual rehabilitation of patients.
About the Authors
I. E. PanovaRussian Federation
Panova Irina E. - MD, Professor, deputy director for scientific work of the Saint Petersburg Branch of the S. Fyodorov Eye Microsurgery Federal State Institution.
Yaroslav Gashek str., 21, Saint Petersburg, 192283; Universitetskaya emb., 7–9, Saint Petersburg, 199034
A. A. Bikhovsky
Russian Federation
Bikhovsky Arseny A. – ophthalmologist.
Yaroslav Gashek str., 21, Saint Petersburg, 192283
E. V. Samkovich
Russian Federation
Samkovich Elena V. - PhD, head of the Scientific and Educational Department, ophthalmologist, oncologist, ultrasonic diagnostician.
Yaroslav Gashek str., 21, Saint Petersburg, 192283
E. M. Svistunova
Russian Federation
Svistunova Evgeniia M. – ophthalmologist.
Yaroslav Gashek str., 21, Saint Petersburg, 192283
References
1. Fardeau C, Champion E, Massamba N, LeHoang P. Uveitic macular edema. Eye. 2016;30(10):1277–1292. doi: 10.1038/eye.2016.115.
2. Das A, McGuire PG, Rangasamy S. Diabetic macular edema: pathophysiology and novel therapeutic targets. Ophthalmology. 2015;122(7):1375–1394. doi: 10.1016/j.ophtha.2015.03.024.
3. Brovkina AF, Khionidi YaN. Late complications of brachytherapy for choroidal melanomas and possibilities for their prevention. Bulletin of Ophthalmology. 2018;134(1):4–11 (In Russ.). doi: 10.17116/oftalma201813414‑11.
4. Modorati GM, Dagan R, Mikkelsen LH, Andreasen S. Ferlito A, Bandello F. Gamma knife radiosurgery for uveal melanoma: a retrospective review of clinical complications in a tertiary referral center. Ocular oncology and pathology. 2020;6(2):115– 122. doi: 10.1159/000501971.
5. Haas A, Pinter O, Papaefthymiou G, Weger M, Berghold A, Schröttner O, Müllner K, Pendl G, Langmann G. Incidence of radiation retinopathy after high‑dosage single‑fraction gamma knife radiosurgery for choroidal melanoma. Ophthalmology. 2002;109(5):909–913. doi: 10.1016/s0161‑6420(02)01011‑4.
6. Bensoussan E, Thariat J, Maschi C, Delas J, Schouver ED, Hérault J, Baillif S, Caujolle JP. Outcomes after proton beam therapy for large choroidal melanomas in 492 patients. American Journal of Ophthalmology. 2016;165:78–87. doi: 10.1016/j.ajo.2016.02.027.
7. Dendale R, Lumbroso‑Le Rouic L, Noel G, Feuvret L, Levy C, Delacroix S, Meyer A, Nauraye C, Mazal A, Mammar H, Garcia P. Proton beam radiotherapy for uveal melanoma: results of Curie Institut–Orsay proton therapy center (ICPO). International Journal of Radiation Oncology, Biology, Physics. 2006;65(3):780–787. doi: 10.1016/j.ijrobp.2006.01.020.
8. Brovkina AF, Stoyukhina AS, Budzinskaya MV, Musatkina IV. On the mechanism of maculopathy development when a choroidal tumor is localized outside the foveal zone. Ophthalmology. 2019;16(1S):49–55. doi: 10.18008/1816‑5095‑2019‑1S‑49‑55.
9. Shields CL, Shields JA, Cater J, Gündüz K, Miyamoto C, Micaily B, Brady LW. Plaque radiotherapy for uveal melanoma: long‑term visual outcome in 1106 consecutive patients. Archives of Ophthalmology. 2000;118(9):1219–1228. doi: 10.1001/archopht.118.9.1219.
10. Rouberol F, Roy P, Kodjikian L, G´erard JP, Jean‑Louis B, Grange JD. Survival, anatomic, and functional long‑term results in choroidal and ciliary body melanoma after ruthenium brachytherapy (15 years’ experience with beta‑rays). American journal of ophthalmology. 2004;137(5):893–900. doi: 10.1016/j.ajo.2003.12.032.
11. Vazhenin AV, Panova IE, Semyonova LE, Efimenko IN, Vazhenina EA. A method for predicting the likelihood of early and late radiation complications during brachytherapy for uveal melanoma. Patent RU 2290071, 07.27.2006.
12. Bykhovsky AA, Panova IE, Samkovich EV. Post‑radiation macular edema after brachytherapy for choroidal melanoma (Ru/Rh106): risk factors and possibilities of correction. Oncology. Journal named after P.A. Herzen. 2023;12(6):19–23. doi: 10.17116/onkolog20231206119.
13. Tomkins‑Netzer O, Lightman S, Drye L, Kempen J, Holland GN, Rao NA, Stawell RJ, Vitale A, Jabs DA, Multicenter Uveitis Steroid Treatment Trial Research Group. Outcome of treatment of uveitic macular edema: the multicenter uveitis steroid treatment trial 2‑year results. Ophthalmology. 2015;122(11):2351–2359. doi: 10.1016/j.ophtha.2015.07.036.
14. Yarovaya VA, Malakshinova EO, Pismenskaya VA, Loginov RA, Yarovoy AA. Results of the anti‑VEGF therapy in patients with radiation retinopathy in uveal melanoma. Ophthalmosurgery. 2024;142(1):58–65. doi: 10.25276/0235‑4160‑2024‑1‑58‑65.
15. Francis JH, Kim J, Lin A, Folberg R, Iyer S, Abramson DH. Growth of uveal melanoma following intravitreal bevacizumab. Ocular oncology and pathology. 2017;3(2):117–121. doi: 10.1159/000450859.
16. Ma J, Roelofs KA, Russell L, Weis E, Chen SH. Rapid growth of primary uveal melanoma following intravitreal bevacizumab injection: a case report and review of the literature. Digital Journal of Ophthalmology. 2020;26(3):27. doi: 10.5693/djo.02.2020.06.001.
17. Lima BR, Schoenfield LR, Singh AD. The impact of intravitreal bevacizumab therapy on choroidal melanoma. American journal of ophthalmology. 2011;151(2):323– 328. doi: 10.1016/j.ajo.2010.08.040.
18. Keung EZ, Gershenwald JE. The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care. Expert review of anticancer therapy. 2018;18(8):775–784. doi: 10.1080/14737140.2018.1489246.
19. Klinicheskie_rekomendacii_final_0222.pdf (дата обращения 05.06.2024). Clinical guidelines “Non‑infectious uveitis”, 2024. Ministry of Health of the Russian Federation. http://avo‑portal.ru/documents/Thr/Klinicheskie_rekomendacii_final_0222.pdf (date of access: 06/05/2024).
20. Clinical guidelines “Uveal melanoma”, 2020. Ministry of Health of the Russian Federation. https://oncology‑association.ru/wp‑content/uploads/2020/09/uvealnaja_melanoma.pdf/ (date of access: 06/01/2024).
21. Jampol LM. Classifications of diabetic macular edema. European Journal of Ophthalmology. 2020;30(1):6–7. doi: 10.1177/1120672119889532.
22. Ossewaarde‑van Norel J, Berg EM, Sijssens KM, Rothova A. Subfoveal serous retinal detachment in patients with uveitic macular edema. Archives of ophthalmology. 2011;129(2):158–162. doi: 10.1001/archophthalmol.2010.337.
23. Lehpamer B, Moshier E, Goldberg N, Ackert J, Godbold J, Jabs DA. Subretinal fluid in uveitic macular edema: effect on vision and response to therapy. American journal of ophthalmology. 2013;155(1):143–149. doi: 10.1016/j.ajo.2012.06.028.
24. O’Sullivan ML, Kron M, Jaffe GJ. Association of disorganization of retinal inner layers with visual acuity in eyes with uveitic cystoid macular edema. American journal of ophthalmology. 2017;177:116–125. doi: 10.1016/j.ajo.2017.02.017.
25. Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, Sellam A, Rothschild PR, Omri S, Gélizé E, Jonet L, Delaunay K, De Kozak Y, Berdugo M, Zhao M, Crisanti P, Behar‑Cohen F. Mechanisms of macular edema: Beyond the surface. Progress in Retinal and Eye Research. 2018;63:20–68. doi: 10.1016/j.preteyeres.2017.10.006.
26. Klaassen I, Van Noorden CJ, Schlingemann RO. Molecular basis of the inner bloodretinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Progress in Retinal and Eye Research. 2013;34:19–48. doi: 10.1016/j.preteyeres.2013.02.001.
27. Das A, McGuire PG, Rangasamy S. Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets. Ophthalmology. 2015;122(7):1375–1394. doi: 10.1016/j.ophtha.2015.03.024.
Review
For citations:
Panova I.E., Bikhovsky A.A., Samkovich E.V., Svistunova E.M. Glucocorticosteroids and Postradiation Macular Edema: Rationale for Choice of Therapy and Efficacy of Use. Ophthalmology in Russia. 2024;21(3):533-539. (In Russ.) https://doi.org/10.18008/1816-5095-2024-3-533-539