Preview

Ophthalmology in Russia

Advanced search

Optical Coherence Tomography in the Diagnosis of Open-angle Glaucoma

https://doi.org/10.18008/1816-5095-2024-4-650-657

Abstract

This literature review provides information on the capabilities and role of OCT-A in the diagnosis of open-angle glaucoma. The need for non-invasive methods of assessing the ocular vasculature has led to the development of OCT-angiography (OCT-A), which provides information on the state of both the retinal structure and its vascular bed through blood flow analysis, further increasing the value of this imaging method compared to conventional OCT. Blood flow assessment with OCT-A can be used to detect many retinal vascular abnormalities, such as the definition of areas of non-perfusion, non-functioning vessels, the appearance of new vessels in areas that are avascular, increased vascularity, the presence of micro- and macroaneurysms, capillary remodeling, macular telangiectasia, and venous malformations. OCT-A is a non-invasive imaging tool for the retinal and choroidal vasculature, providing a unique view of the vascular system that can be combined with information from other imaging modalities to complement and eventually provide unique information to assist the eye care practitioner in diagnosing or evaluating the effectiveness of interventions. OCT-A parameters are measured in the peripapillary region, and monitoring peripapillary and macular vessel density can provide important information to assess glaucoma progression and predict the rate of disease worsening. Studies show a strong correlation between OCT parameters, OCT parameters, and visual function as measured by visual field analysis in glaucomatous eyes. Future prospects for OCT-A in glaucoma diagnostics using artificial intelligence to predict structural and functional features based on early vascular changes will provide opportunities for early identification of patients at high risk for developing and rapidly progressing glaucoma. OCT-A has the potential to become part of glaucoma diagnostics and treatment.

About the Authors

Yu. N. Yusef
M.M. Krasnov Research Institute of Eye Diseases
Russian Federation

Yusef Naim Y., MD, Head of Research Institute of Eye Diseases

Rossolimo str., 11A, B, Moscow, 119021



E. E. Kazaryan
M.M. Krasnov Research Institute of Eye Diseases
Russian Federation

Kazaryan Elina E., MD, Senior Research Officer of the Modern Treatment Methods in Ophthalmology Department

Rossolimo str., 11A, B, Moscow, 119021



References

1. Huang D, Swanson EA, LinCP Optical coherencetomography. Science. 1991;254:1178– 1181. doi: 10.1126/science.1957169.

2. Ly A, Phu J, Katalinic P. An evidencebased approach to theroutine use of optical coherence tomography. Clin Exp Optom. 2019;102:242–259. doi: 10.1111/cxo.12847.

3. Pichi F, Invernizzi A, Tucker WR. Optical coherence tomography diagnostic signs in posterior uveitis. Prog Retin Eye Res. 2020;75:100797. doi: 10.1016/j.preteyeres.2019.100797.

4. Spaide RF, Fujimoto JG, Waheed NK Optical coherencetomography angiography. Prog Retin Eye Res. 2018;64:1–55. doi: 10.1016/j.preteyeres.2017.11.003.

5. Kashani AH, Chen CL, Gahm JK Optical coherence tomography angiography: a comprehensive review of current methodsand clinical applications. Prog Retin Eye Res. 2017;60:66–100. doi: 10.1016/j.preteyeres.2017.07.002.

6. Ferrara D, Waheed NK, Duker JS. Investigating the choriocapillarisand choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res. 2016;52:130–155. doi: 10.1016/j.preteyeres.2015.10.002.

7. Ho S, Ly A, OhnoMatsui K. Diagnostic accuracy of OCTA andOCT for myopic choroidal neovascularisation: a systematic review. Сlinical and experimental optometry 495and metaanalysis. Eye (Lond). 2023;37:21–29. doi: 10.1038/s41433-022-02227-8.

8. Ong CJT, Wong MYZ, Cheong KX. Optical coherence tomography angiography in retinal vascular disorders. Diagno (Basel). 2023;13:1620. doi: 10.3390/diagnostics13091620.

9. Kornblau IS, ElAnnan JF. Adverse reactionsto fluorescein angiography: a comprehensive review of the literature. SurvOphthalmol. 2019;64:679–693. doi: 10.1016/j.survophthal.2019.02.004.

10. Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR, Gruber A. Three dimensional optical angiography. Opt Express. 2007;15(7):4083–4097. doi: 10.1364/oe.15.004083.

11. Zhang A, Zhang Q, Chen CL, Wang RK. Methods and algorithms for optical coherence tomographybased angiography: a review and comparison. J Biomed Opt. 2015;20(10):100901.

12. Fingler J, Schwartz D, Yang C, Fraser SE. Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. Opt Express. 2007;15(20):12636–12653. doi: 10.1364/oe.15.012636.

13. Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014 Jul;121(7):1322–1332. doi: 10.1016/j.ophtha.2014.01.021.

14. Lin TPH, Wang YM, Ho K, Wong CYK, Chan PP, Wong MOM, Chan NCY, Tang F, Lam A, Leung DYL, Wong TY, Cheng CY, Cheung CY, Tham CC. Global assessment of arteriolar, venular and capillary changes in normal tension glaucoma. Sci Rep. 2020 Nov 5;10(1):19222. doi: 10.1038/s41598-020-75784-1.

15. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and metaanalysis. Ophthalmology. 2014 Nov;121(11):2081–2090. doi: 10.1016/j.ophtha.2014.05.013.

16. Flammer J, Mozaffarieh M. Autoregulation, a balancing act between supply and demand. Can J Ophthalmol. 2008 Jun;43(3):317–321. doi: 10.3129/i08-056.

17. Lee EJ, Lee KM, Lee SH, Kim TW. OCT Angiography of the Peripapillary Retina in Primary OpenAngle Glaucoma. Invest Ophthalmol Vis Sci. 2016 Nov 1;57(14):6265–6270. doi: 10.1167/iovs.16-20287.

18. Holló G. Optical Coherence Tomography Angiography in Glaucoma. Turk J Ophthalmol. 2018 Aug;48(4):196–201. doi: 10.4274/tjo.53179.

19. Tan ACS, Tan GS, Denniston AK, Keane PA, Ang M, Milea D, Chakravarthy U, Cheung CMG. An overview of the clinical applications of optical coherence tomography angiography. Eye (Lond). 2018 Feb;32(2):262–286. doi: 10.1038/eye.2017.181.

20. Jia Y, Morrison JC, Tokayer J, Tan O, Lombardi L, Baumann B, Lu CD, Choi W, Fujimoto JG, Huang D. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012,3:3127–3137.

21. Holló G. Intrasession and BetweenVisit Variability of Sector Peripapillary Angioflow Vessel Density Values Measured with the Angiovue Optical Coherence Tomograph in Different Retinal Layers in Ocular Hypertension and Glaucoma. PLoS One. 2016 Aug 18;11(8):e0161631. doi: 10.1371/journal.pone.0161631.

22. Holló G. Vessel density calculated from OCT angiography in 3 peripapillary sectors in normal, ocular hypertensive, and glaucoma eyes. Eur J Ophthalmol. 2016 Apr 12;26(3):e42–45. doi: 10.5301/ejo.5000717.

23. Holló G. Valsalva Maneuver and Peripapillary OCT Angiography Vessel Density. J Glaucoma. 2018 Jul;27(7):e133–e136. doi: 10.1097/IJG.0000000000000983.

24. Holló G. Influence of Removing the Large Retinal Vesselsrelated Effect on Peripapillary Vessel Density Progression Analysis in Glaucoma. J Glaucoma. 2018 Aug;27(8):e137–e139. doi: 10.1097/IJG.0000000000000990.

25. Venugopal JP, Rao HL, Weinreb RN, Pradhan ZS, Dasari S, Riyazuddin M, Puttiah NK, Rao DAS, Devi S, Mansouri K, Webers CA. Repeatability of vessel density measurements of optical coherence tomography angiography in normal and glaucoma eyes. Br J Ophthalmol. 2018 Mar;102(3):352–357. doi: 10.1136/bjophthalmol-2017-310637.

26. Manalastas PIC, Zangwill LM, Saunders LJ, Mansouri K, Belghith A, Suh MH, Yarmohammadi A, Penteado RC, Akagi T, Shoji T, Weinreb RN. Reproducibility of Optical Coherence Tomography Angiography Macular and Optic Nerve Head Vascular Density in Glaucoma and Healthy Eyes. J Glaucoma. 2017 Oct;26(10):851–859. doi: 10.1097/IJG.0000000000000768.

27. Geyman LS, Garg RA, Suwan Y, Trivedi V, Krawitz BD, Mo S, Pinhas A, Tantraworasin A, Chui TYP, Ritch R, Rosen RB. Peripapillary perfused capillary density in primary openangle glaucoma across disease stage: an optical coherence tomography angiography study. Br J Ophthalmol. 2017 Sep;101(9):1261–1268. doi: 10.1136/bjophthalmol-2016-309642.

28. Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 2018 Aug;256(8):1499–1508. doi: 10.1007/s00417-018-3965-1.

29. Leung CK, Lam S, Weinreb RN, et al. Retinal nerve fiber layer imaging with spectraldomain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Ophthalmology. 2010;117:1684-1691. doi: 10.1016/j.ophtha.2010.01.026.

30. Kurysheva NI, Nikitina AD. Optical coherence tomography and optical coherence tomography angiography for detecting glaucoma progression. Part 1. Study methods, measurement variability and the role of agerelated changes. Annals of Ophthalmology. 2023;139(1):122–128 (In Russ.). doi: 10.17116/oftalma2023139011122.

31. Yarmohammadi A, Zangwill LM, DinizFilho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT451– 459. doi: 10.1167/iovs.15-18944.

32. Rao HL, Kadambi SV, Weinreb RN, Puttaiah NK, Pradhan ZS, Rao DAS, Kumar RS, Webers CAB, Shetty R. Diagnostic ability of peripapillary vessel density measurements of optical coherence tomography angiography in primary openangle and angleclosure glaucoma. Br J Ophthalmol. 2017 Aug;101(8):1066–1070. doi: 10.1136/bjophthalmol-2016-309377.

33. Rao HL, Dasari S, Riyazuddin M, Puttaiah NK, Pradhan ZS, Weinreb RN, Mansouri K, Webers CAB. Diagnostic Ability and Structurefunction Relationship of Peripapillary Optical Microangiography Measurements in Glaucoma. J Glaucoma. 2018 Mar;27(3):219–226. doi: 10.1097/IJG.0000000000000873.

34. Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP, Puttaiah NK, Rao DAS, Devi S, Mansouri K, Webers CAB. Vessel Density and Structural Measurements of Optical Coherence Tomography in Primary Angle Closure and Primary Angle Closure Glaucoma. Am J Ophthalmol. 2017 May;177:106–115. doi: 10.1016/j.ajo.2017.02.020.

35. Wan KH, Lam AKN, Leung CK. Optical Coherence Tomography Angiography Compared With Optical Coherence Tomography Macular Measurements for Detection of Glaucoma. JAMA Ophthalmol. 2018 Aug 1;136(8):866–874. doi: 10.1001/jamaophthalmol.2018.1627.

36. Richter GM, Madi I, Chu Z, Burkemper B, Chang R, Zaman A, Sylvester B, Reznik A, Kashani A, Wang RK, Varma R. Structural and Functional Associations of Macular Microcirculation in the Ganglion CellInner Plexiform Layerin Glaucoma Using Optical Coherence Tomography Angiography. J Glaucoma. 2018 Mar;27(3):281– 290. doi: 10.1097/IJG.0000000000000888.

37. Kurysheva NI, Pechenkina AA, Goncharova AS. Methods of examination of patients with glaucoma during the COVID19 pandemic. Annales of ophthalmology. 2021;137(2):75–83 (In Russ.). doi: 10.17116/oftalma202113702175.

38. Suh MH, Zangwill LM, Manalastas PI, Belghith A, Yarmohammadi A, Medeiros FA, DinizFilho A, Saunders LJ, Yousefi S, Weinreb RN. Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects. Ophthalmology. 2016 Nov;123(11):2309–2317. doi: 10.1016/j.ophtha.2016.07.023.

39. Holló G. Relationship between optical coherence tomography sector peripapillary angioflowdensity and Octopus visual field cluster mean defect values. PLoS One. 2017 Feb 2;12(2):e0171541. doi: 10.1371/journal.pone.0171541.

40. Rao HL, Pradhan ZS, Weinreb RN, Dasari S, Riyazuddin M, Raveendran S, Puttaiah NK, Venugopal JP, Rao DAS, Devi S, Mansouri K, Webers CAB. Relationship of Optic Nerve Structure and Function to Peripapillary Vessel Density Measurements of Optical Coherence Tomography Angiography in Glaucoma. J Glaucoma. 2017 Jun;26(6):548–554. doi: 10.1097/IJG.0000000000000670.

41. Yarmohammadi A, Zangwill LM, DinizFilho A, Suh MH, Yousefi S, Saunders LJ, Belghith A, Manalastas PI, Medeiros FA, Weinreb RN. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology. 2016 Dec;123(12):2498–2508. doi: 10.1016/j.ophtha.2016.08.041.

42. Angelov B, Petrova K. Optical coherence tomography and its role in the diagnosis of ocular hypertension, preperimetric and perimetric glaucoma. Ophthalmology in Russia. 2015;12(1):46–56 (In Russ.). doi: 10.18008/1816-5095-2015-1-46-5643.

43. Grieshaber MC, Mozaffarieh M, Flammer J. What is the link between vascular dysregulation and glaucoma? Surv Ophthalmol. 2007 Nov;52 Suppl 2:S144–154. doi: 10.1016/j.survophthal.2007.08.010.

44. Holló G. Relationship Between OCT Angiography Temporal Peripapillary Vessel Density and Octopus Perimeter Paracentral Cluster Mean Defect. J Glaucoma. 2017 May;26(5):397–402. doi: 10.1097/IJG.0000000000000630.

45. Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T, Akagi T, Christopher M, Yarmohammadi A, Moghimi S, Weinreb RN. Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 102 Visual Field in Glaucoma. J Glaucoma. 2018 Jun;27(6):481–489. doi: 10.1097/IJG.0000000000000964.

46. Shin JW, Kwon J, Lee J, Kook MS. Relationship between vessel density and visual field sensitivity in glaucomatous eyes with high myopia. Br J Ophthalmol. 2018 Jun 1:bjophthalmol2018312085. doi: 10.1136/bjophthalmol-2018-312085.

47. Suwan Y, Fard MA, Geyman LS, Tantraworasin A, Chui TY, Rosen RB, Ritch R. Association of Myopia With Peripapillary Perfused Capillary Density in Patients With Glaucoma: An Optical Coherence Tomography Angiography Study. JAMA Ophthalmol. 2018 May 1;136(5):507–513. doi: 10.1001/jamaophthalmol.2018.0776.

48. Sung MS, Lee TH, Heo H, Park SW. Association Between Optic Nerve Head Deformation and Retinal Microvasculature in High Myopia. Am J Ophthalmol. 2018 Apr;188:81–90. doi: 10.1016/j.ajo.2018.01.033.

49. Schwab C, Glatz W, Schmidt B, Lindner E, Oettl K, Riedl R, Wedrich A, Ivastinovic D, VelikayParel M, Mossboeck G. Prevalence of posterior vitreous detachment in glaucoma patients and controls. Acta Ophthalmol. 2017 May;95(3):276–280. doi: 10.1111/aos.13339.

50. Ghasemi Falavarjani K, AlSheikh M, Akil H, Sadda SR. Image artefacts in sweptsource optical coherence tomography angiography. Br J Ophthalmol. 2017 May;101(5):564–568. doi: 10.1136/bjophthalmol-2016-309104.

51. Holló G. Optical coherence tomography angiography and glaucoma. In: Chow DR, de Olivieria RPC, eds. OCT angiography. New York; Thieme Medical Publishers Inc; 2017:112–126.

52. Holló G. Influence of Large Intraocular Pressure Reduction on Peripapillary OCT Vessel Density in Ocular Hypertensive and Glaucoma Eyes. J Glaucoma. 2017 Jan;26(1):e7–e10. doi: 10.1097/IJG.0000000000000527.

53. Shin JW, Sung KR, Uhm KB, Jo J, Moon Y, Song MK, Song JY. Peripapillary Microvascular Improvement and Lamina Cribrosa Depth Reduction After Trabeculectomy in Primary OpenAngle Glaucoma. Invest Ophthalmol Vis Sci. 2017 Nov 1;58(13):5993–5999. doi: 10.1167/iovs.17-22787.

54. Alnawaiseh M, Müller V, Lahme L, Merté RL, Eter N. Changes in Flow Density Measured Using Optical Coherence Tomography Angiography after iStent Insertion in Combination with Phacoemulsification in Patients with Open Angle Glaucoma. J Ophthalmol. 2018 Jan 31;2018:2890357. doi: 10.1155/2018/2890357.

55. Holló G. Comparison of Peripapillary OCT Angiography Vessel Density and Retinal Nerve Fiber Layer Thickness Measurements for Their Ability to Detect Progression in Glaucoma. J Glaucoma. 2018 Mar;27(3):302–305. doi: 10.1097/IJG.0000000000000868.

56. Hsiao CC, Hsu HM, Yang CM, Yang CH. Correlation of retinal vascular perfusion density with dark adaptation in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2019 Jul;257(7):1401–1410. doi: 10.1007/s00417-019-04321-2.

57. Lommatzsch C, Rothaus K, Koch JM, Heinz C, Grisanti S. OCTA vessel density changes in the macular zone in glaucomatous eyes. Graefes Arch Clin Exp Ophthalmol. 2018 Aug;256(8):1499–1508. doi: 10.1007/s00417-018-3965-1.

58. Munk MR, GiannakakiZimmermann H, Berger L, Huf W, Ebneter A, Wolf S, Zinkernagel MS. OCTangiography: A qualitative and quantitative comparison of 4 OCTA devices. PLoS One. 2017 May 10;12(5):e0177059. doi: 10.1371/journal.pone.0177059.

59. Munk MR, Kashani AH, Tadayoni R, Korobelnik JF, Wolf S, Pichi F, Tian M. Standardization of OCT Angiography Nomenclature in Retinal Vascular Diseases: First Survey Results. Ophthalmol Retina. 2021 Oct;5(10):981–990. doi: 10.1016/j.oret.2020.12.022.

60. Pichi F, Salas EC, D de Smet M, Gupta V, Zierhut M, Munk MR. Standardisation of optical coherence tomography angiography nomenclature in uveitis: firstsurvey results. Br J Ophthalmol. 2021 Jul;105(7):941–947. doi: 10.1136/bjophthalmol-2020-316881.

61. Kalloniatis M, Wang H, Phu J, Tong J, Armitage J. Optical coherence tomography angiography in the diagnosis of ocular disease. Clin Exp Optom. 2024 Jul;107(5):482– 498. doi: 10.1080/08164622.2024.2323603.

62. Yang D, Ran AR, Nguyen TX, Lin TPH, Chen H, Lai TYY, Tham CC, Cheung CY. Deep Learning in Optical Coherence Tomography Angiography: Current Progress, Challenges, and Future Directions. Diagnostics (Basel). 2023 Jan 16;13(2):326. doi: 10.3390/diagnostics13020326.

63. Braun M, Saini C, Sun JA, Shen LQ. The Role of Optical Coherence Tomography Angiography in Glaucoma. Semin Ophthalmol. 2024 Aug;39(6):412–423. doi: 10.1080/08820538.2024.2343049.


Review

For citations:


Yusef Yu.N., Kazaryan E.E. Optical Coherence Tomography in the Diagnosis of Open-angle Glaucoma. Ophthalmology in Russia. 2024;21(4):650-657. (In Russ.) https://doi.org/10.18008/1816-5095-2024-4-650-657

Views: 319


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)