Preview

Ophthalmology in Russia

Advanced search

Comparative Characteristics of Corneal Confocal Microscopy after UV-A Cross-linking with Different Riboflavin Solutions in Experiment

https://doi.org/10.18008/1816-5095-2024-4-802-808

Abstract

Corneal cross-linking (CXL) has become the most common way of managing keratectasia. To date, the Dresden protocol (G. Wollensak et al., 2003) has acquired many modifications, in which the composition of the applied agents or modes of CXL procedure have been changed. This article presents the results of studying morphological changes of rabbit cornea in vivo after CXL using riboflavin solutions of different composition.

Purpose: compare the effect of CXL on the corneal morphological structure in experimental animals by confocal microscopy using riboflavin with saline, dextran and hydroxypropylmethylcellulose.

Material and methods. The study was performed on 20 eyes of 15 rabbits, which underwent standard (Epi-Off) CXL with 0.1 % riboflavin in 3 groups: in the first group saline was used as a base, in the second group — 20 % dextran, in the third — 1.0 % hydroxypropyl methylcellulose (HPMC). Corneal irradiation mode: 3 mW/cm2, 30 minutes, wavelength 370 nm. The corneal condition was evaluated at 3, 7, 14, 30 and 90 days after CXL. Biomicroscopy and confocal microscopy were performed in all animals using Heidelberg Retinal Tomographer HRT-III (Heidelberg Engineering, Germany). Keratocyte density was counted at the depth of 120–160 μm in the central zone on the area of 1 mm2. Statistical processing of the results was performed using Statistica 6.1 and Excel 2010 programmes.

Results. In vivo biomicroscopy and confocal microscopy of the rabbit corneas showed postoperative changes in the epithelium and stroma after CXL. In all groups, 7 days after CXL, there was a decrease in keratocyte density, due to apoptosis, observed predominantly in the anterior layers of the stroma. The number of keratocytes after CXL in group 1 was 192.5 ± 29.8 cells/mm2, in group 2 — 227.4 ± 38.2 cells/mm2, in group 3 — 204.4 ± 32.6 cells/mm2 against intact control 352.8 ± 35.2 cells/mm2. There was not statistically significant difference between the groups.

Conclusion. The results of lifetime confocal microscopy of the rabbit cornea demonstrated similar morphological changes in the early postoperative period, which were accompanied by the loss of subepithelial nerve fibres, development of lacunar edema, apoptosis of keratocytes with a decrease in their density mainly in the anterior and middle layers of the stroma. The beginning of keratocyte repopulation and nerve fibre regeneration was observed on the 30th day after CXL. No signs of endothelium damage were detected. A comparative assessment of the greatest effectiveness of CXL techniques with 0.1% riboflavin in saline, dextran or HPMC can be given on the basis of larger-scale experimental and clinical studies.

About the Authors

M. M. Bikbov
Ufa Eye Research Institute
Russian Federation

Bikbov Mukharram М., MD, Professor; director of Ufa Research Institute of Eye Diseases

Pushkin str., 90, Ufa, 450008



A. R. Khalimov
Ufa Eye Research Institute
Russian Federation

Khalimov Azat R., MD (Biol.), head of the scientific and innovative department

Pushkin str., 90, Ufa, 450008



E. L. Usubov
Ufa Eye Research Institute
Russian Federation

Usubov Emin L., PhD, head of the department of corneal and lens surgery

Pushkin str., 90, Ufa, 450008



G. Kh. Zainutdinova
Ufa Eye Research Institute
Russian Federation

Zainutdinova Guzel Kh., MD, senior researcher at the department for the organization of scientific research and development

Pushkin str., 90, Ufa, 450008



I. D. Valishin
Ufa Eye Research Institute
Russian Federation

Valishin Iskander D., ophthalmologist of the 1st microsurgical department

Pushkin str., 90, Ufa, 450008



L. I. Gilemzyanova
Ufa Eye Research Institute
Russian Federation

Gilemzyanova Leysan I., head of the laboratory of experimental research

Pushkin str., 90, Ufa, 450008



References

1. Wollensak G, Spoerl E, Seiler T. Riboflavin/ultravioletainduced collagen crosslinking for the treatment of keratoconus. American Journal of Ophthalmology. 2003;135(5):620–627. doi: 10.1016/s0002-9394(02)02220-1.

2. Lenk J, Herber R, Raiskup F, Pillunat LE, Spörl E. Principles of corneal crosslinking: Presentation based on the development of the various treatment protocols. Ophthalmologe. 2022;119(4):332–341. doi: 10.1007/s00347-021-01538-7.

3. Ozgurhan E, Akcay B, Kurt T, Yildirin Y, Demirok A. Accelerated corneal collagen crosslinking in thin keratoconic corneas. J Refract Surg. 2015;31:386–390. doi: 10.3928/1081597X-20150521-11.

4. Desmurkh R, Hafezi F, Kymionis G, Kling S, Shah R, Padmanabhan P, Sachdev MS. Curent concepts in crosslinking thin corneas. Indian J Ophthalmol. 2019;67(1):8– 15. doi: 10.4103/ijo.IJO_1403_18.

5. Caporossi A, Mazzotta C, Paradiso AL, Baiocchi S, Marigliani D, Caporossi T. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24month clinical results. J Cataract Refract Surg. 2013;39(8):1157–1163. doi: 10.1016/j.jcrs.2013.03.026.

6. Mazzotta C, Raiskup F, Hafezi F, TorresNetto EA, Balamoun AA, Giannaccare G, Bagaglia SA. Long term results of accelerated 9mW corneal crosslinking for early progressive keratoconus: the Siena EyeCross Study 2. Eye Vis (Lond). 2021;8:16. doi: 10.1186/s40662-021-00240-8.

7. O’Brart NAL, O’Brart DPS, Aldahlawi NH, Hayes S, Meek KM. An Investigation of the Effects of Riboflavin Concentration on the Efficacy of Corneal CrossLinking Using an Enzymatic Resistance Model in Porcine. Invest Ophthalmol Vis Sci. 2018;59(2):1058–1065. doi: 10.1167/iovs.17-22994.

8. Wernli J, Schumacher S, Spoerl E, Mrochen M. The efficacy of corneal crosslinking shows a sudden decrease with very high intensity UV light and short treatment time. Invest Ophthalmol Vis Sci. 2013;54(2):1176–1180. doi: 10.1167/iovs.12-11409.

9. Kobashi H, Yunoki S, Kato N, Shimazaki J, Ide T, Tsubota K. Evaluation of the Physiological Corneal Intrastromal Riboflavin Concentration and the Corneal Elastic Modulus After Violet Light Irradiation. Transl Vis Sci Technol. 2021;10(5):12. doi: 10.1167/tvst.10.5.12.

10. Ashena Z, Doherty S, Gokul A, McGhee C, Ziaei M, Nanavaty M. Flattening of central, paracentral, and peripheral cones after nonaccelerated and accelerated epitheliumoff CXL in keratoconus: a multicenter study. J Refract surg. 2022;38(5):310– 316. doi: 10.3928/1081597X-20220404-02.

11. Said D, Ross A, Messina M, Mohammed I, Dua H. Localised corneal haze and scarring following pulsed accelerated collagen crosslinking for keratoconus. Eye. 2019;33(1):167–168. doi: 10.1038/s41433-018-0211-3.

12. Bikbov MM, Khalimov AR, Usubov EL. Ultraviolet Corneal Crosslinking. Annals of the Russian Academy of Medical Sciences. 2016;71(3):224–232 (In Russ.). doi: 10.15690/vramn562.

13. Chiang JCB, Roy M, Kim J, Markoulli M, Krishnan AV. Invivo corneal confocal microscopy: Imaging analysis, biological insights and future directions. Common Biological. 2023;6(1):652. doi: 10.1038/s42003-023-05005-8.

14. Mazzotta C, Traversi C, Caragiuli S, Rechichi M. Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT. Eye (Lond). 2014;28(10):1179–1183. doi: 10.1038/eye.2014.163.

15. Touboul D, Efron N, Smadja D, Praud D, Malet F, Colin J. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen crosslinking procedures for keratoconus. J Refract Surg. 2012;28(11):769–776. doi: 10.3928/1081597X-20121016--01.

16. Jordan C, Patel DV, Abeysekera N, McGhee CNJ. In vivo confocal microscopy analyses of corneal microstructural changes in a prospective study of collagen crosslinking in keratoconus. Ophthalmology. 2014;121(2):469–474. doi: 10.1016/j.ophtha.2013.09.014.

17. Mazzotta C, Hafezi F, Kymionis G, Caragiuli S, Jacob S, Traversi C, Barabino S, Randleman JB. In Vivo Confocal Microscopy after Corneal Collagen Crosslinking. Ocul Surf. 2015;13(4):298–314. doi: 10.1016/j.jtos.2015.04.007.

18. Shajari M, Kolb CM, Agha B, Steinwender G, Müller M, Herrmann E, Schmack I, Mayer WJ, Kohnen T. Comparison of standard and accelerated corneal cross linking for the treatment of keratoconus: a metaanalysis. Acta Ophthalmol. 2019;97(1):e22–e35. doi: 10.1111/aos.13814.

19. Teo AWJ, Mansoor H, Sim N, Lin MTY, Liu YCi. In Vivo Confocal Microscopy Evaluation in Patients with Keratoconus. J Clin Med. 2022;11(2):393. doi: 10.3390/jcm11020393.

20. Hacıagaoglu S, Turhan SA, Toker E. A comparison of conventional and accelerated corneal crosslinking: corneal epithelial remodeling and in vivo confocal microscopy analysis. Int Ophthalmol. 2024;44(1):87. doi: 10.1007/s10792-024-03020-0.

21. Hypothesis M, Innov D, Osaba M, Tempesti T, Reviglio VE. Photophysical and photodynamic analysis of different Rb formulations Photophysical and photodynamic analysis of different formulations of riboflavin. Medical Hypothesis Discovery & Innovation in Optometry. 2023;4(4):181–187. doi: 10.51329/mehdioptometry189.

22. TkachenkoNV, Astakhov SYu. Confocal microscopy diagnostic abilitiesin investigation of superficial eyeball structures. Ophthalmological reports. 2009;2(1):82–89 (In Russ.).

23. Wollensak G, Spoerl E, Seiler T. Keratocyte apoptosis afer collagen crosslinking using ribofavin / UVA treatment. Cornea. 2004;23(1):43–49. doi: 10.1097/00003226-200401000-00008.

24. Guthoff RF, Baudouin C, Stave J. Atlas of Confocal Laser Scanning In vivo Microscopy in Ophthalmology. Berlin: Heidelberg; New York: SpringerVerlag. 2006. 200 p.

25. Rapuano PB, Mathews PM, Florakis GJ, Trokel SL, Such LH. Corneal collagen crosslinking in patients treated with dextran versus isotonic hydroxypropyl methylcellulose (HPMC) riboflavin solution: a retrospective analysis. Eye and Vision. 2018;5:23. doi: 10.1186/s40662-018-0116-z.

26. Khalimov AR. The role of dextran in ophthalmic riboflavin solution for UV corneal crosslinking. Point of view. EastWest. 2018;1:136–138 (In Russ.). doi: 10.25276/2410-1257-2018-1-136-138.

27. Thorsrud A, Hagem AМ, Sandvik GF, Drolsum L. Acta Superior outcome of corneal collagen crosslinking using riboflavin with methylcellulose than riboflavin with dextran asthe main supplement. Ophthalmol. 2019;97(4):415–421. doi: 10.1111/aos.13928.

28. Hammer A, Rudaz S, Guinchard S, Kling S, Richoz O, Hafezi F. Analysis of riboflavin compounds in the rabbit cornea in vivo. Curr Eye Res. 2016;41(9):1166–1172. doi: 10.3109/02713683.2015.1101141.

29. Bikbov MM, Shevchuk NE, Khalimov AR, Bikbova GM. Dynamics of riboflavin level in aqueous humour of anterior chamber of experimental animals under standard stroma saturation by ultraviolet corneal crosslinking solutions. Russian Annals of Ophthalmology. 2016;132(6):29–35 (In Russ.). doi: 10.17116/oftalma201613262935.

30. Wollensak G, Auric H, Wirbelauer C, Sel S. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg. 2010;36:114–120. doi: 10.1016/j.jcrs.2009.07.044.


Review

For citations:


Bikbov M.M., Khalimov A.R., Usubov E.L., Zainutdinova G.Kh., Valishin I.D., Gilemzyanova L.I. Comparative Characteristics of Corneal Confocal Microscopy after UV-A Cross-linking with Different Riboflavin Solutions in Experiment. Ophthalmology in Russia. 2024;21(4):802-808. (In Russ.) https://doi.org/10.18008/1816-5095-2024-4-802-808

Views: 187


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)