Preview

Офтальмология

Расширенный поиск

Изменение оптической плотности макулярного пигмента как новый фактор риска первичной открытоугольной глаукомы

https://doi.org/10.18008/1816-5095-2025-2-376-382

Аннотация

С возрастом увеличивается распространенность таких заболеваний глаз, как первичная открытоугольная глаукома (ПОУГ) и возрастная макулярная дегенерация (ВМД), которые являются основными причинами потери зрения у пожилых пациентов. Недавние исследования показывают, что снижение оптической плотности макулярного пигмента (ОПМП), состоящего из лютеина, зеаксантина и мезозеаксантина, может быть связано с повышенным риском ПОУГ. Эти каротиноиды играют ключевую роль в защите фоторецепторов от окислительного стресса, регулируют световую фильтрацию и обеспечивают нейропротекцию. Исследования продемонстрировали, что пациенты с ПОУГ имеют более низкий уровень ОПМП, что может быть ранним биомаркером глаукомной нейродегенерации. Кроме того, прием нутрицевтиков, содержащих макулярные каротиноиды, обеспечивает повышение ОПМП, что может способствовать сохранению зрительных функций. Дополнительную защиту обеспечивают витамины группы B и ниацин, которые поддерживают митохондриальное здоровье и снижают окислительный стресс в ганглиозных клетках сетчатки. Таким образом, изучение ОПМП как потенциального модифицируемого фактора риска ПОУГ открывает новые перспективы для диагностики и терапии заболевания. Дальнейшие исследования необходимы для определения оптимальных стратегий применения нутрицевтиков и оценки влияния ОПМП на течение глаукомы.

Об авторах

И. А. Лоскутов
ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского» (МОНИКИ)
Россия

Лоскутов Игорь Анатольевич доктор медицинских наук, руководитель офтальмологического отделения, заведующий кафедрой офтальмологии и оптометрии

 

ул. Щепкина, 61/2, Москва, 129110



О. М. Андрюхина
ГБУЗ МО «Московский областной научно-исследовательский клинический институт им. М.Ф. Владимирского» (МОНИКИ)
Россия

Андрюхина Ольга Михайловна кандидат медицинских наук, старший научный сотрудник офтальмологического отделения, ассистент кафедры офтальмологии и оптометрии

ул. Щепкина, 61/2, Москва, 129110



Список литературы

1. Lin PJ, Abraham AG, Ramulu P, Mihailovic A, Kucharska‑Newton A, Guo X. Social Determinants of Uncorrected Distance and Near Visual Impairment in an Older Adult Population. Transl Vis Sci Technol. 2025 Jan 2;14(1):8. doi: 10.1167/tvst.14.1.8.

2. Wang Y, Zhong Y, Zhang L, Wu Q, Tham Y, Rim TH, Kithinji DM, Wu J, Cheng C, Liang H, Yu H, Yang X, Liu L. Global Incidence, Progression, and Risk Factors of Age‑Related Macular Degeneration and Projection of Disease Statistics in 30 Years: A Modeling Study. Gerontology. 2022;68(7):721–735. doi: 10.1159/000518822.

3. Фурсова АЖ, Гусаревич ОГ, Тарасов МС, Васильева МА, Чубарь НВ, Литвинова НВ. Возрастная макулярная дегенерация и глаукома. Эпидемиологические и клинико‑патогенетические аспекты сочетанного течения. Сибирский научный медицинский журнал. 2018;38(5):83–91. doi: 10.15372/SSMJ20180514.

4. Zisberg A, Rayan‑Gharra N, Danial‑Saad A, Rogozinski A, Fraiman PS, Segel‑Karpas D. Age‑Friendly Healthcare: An Evolutionary Concept Analysis. J Clin Nurs. 2024 Dec;33(12):4635–4650. doi: 10.1111/jocn.17457.

5. Нероев ВВ, Михайлова ЛА, Малишевская ТН, Петров СЮ, Филиппова ОМ. Эпидемиология глаукомы в Российской Федерации. Российский офтальмологический журнал. 2024;17(3):7–12. doi: 10.21516/2072‑0076‑2024‑17‑3‑7‑12.

6. Dimalanta L, Pithadia K, Shenkute NT, Strelow B, Zhang Z, Ulrich J, Zhang AY, Fleischman D. Disease Associations among Patients Afflicted with Both Glaucoma and Age‑Related Macular Degeneration. J Clin Med. 2024 Oct 6;13(19):5941. doi: 10.3390/jcm13195941.

7. Еричев ВП, Онищенко АЛ, Куроедов АВ, Петров СЮ, Брежнев АЮ, Антонов АА, Витков АА, Мураховская ЮК. Офтальмологические факторы риска развития первичной открытоугольной глаукомы. Клиническая офтальмология. 2019;19(2):81–86. doi: 10.32364/2311‑7729‑2019‑19‑2‑81‑86.

8. Витков АА, Хдери Х, Агаджанян ТМ, Акимов АМ, Асиновскова ИИ, Комаров АА, Семенов ЕД. Выбор метода измерения внутриглазного давления для оценки гипотензивной эффективности антиглаукомных операций. Национальный журнал Глаукома. 2023;22(2):39–43. doi: 10.53432/2078‑4104‑2023‑222‑39‑43.

9. Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002;120(10):1268–1279. doi: 10.1001/archopht.120.10.1268.

10. Downs JC, Fleischman D. 2020–2022 Research Committee of the American Glaucoma Society and the 2020–2022 Glaucoma Clinical Committee of the American Society of Cataract and Refractive Surgery, Unmet needs in the detection, diagnosis, monitoring, treatment, and understanding of primary open‑angle glaucoma: a position statement of the American Glaucoma Society and the American Society of Cataract and Refractive Surgery. Ophthalmol. Glaucoma. 2022;5(5):465–467. doi: 10.1016/j.ogla.2022.02.008.

11. Grudzinski W, Luchowski R, Ostrowski J, Sęk A, Mendes Pinto MM, WelcStanowska R, Zubik‑Duda M, Teresiński G, Rejdak R, Gruszecki WI. Physiological Significance of the Heterogeneous Distribution of Zeaxanthin and Lutein in the Retina of the Human Eye. Int J Mol Sci. 2023 Jun 27;24(13):10702. doi: 10.3390/ijms241310702.

12. Grudzinski W, Luchowski R, Ostrowski J, Sęk A, Mendes Pinto MM, WelcStanowska R, Zubik‑Duda M, Teresiński G, Rejdak R, Gruszecki WI. Physiological Significance of the Heterogeneous Distribution of Zeaxanthin and Lutein in the Retina of the Human Eye. Int J Mol Sci. 2023 Jun 27;24(13):10702. doi: 10.3390/ijms241310702.

13. Krinsky NI. Carotenoid protection against oxidation. Pure Appl. Chem. 1979;51:649–660. doi: 10.1351/pac197951030649.

14. Kang JH, Pasquale LR, Willett W, Rosner B, Egan KM, Faberowski N, Hankinson SE. Antioxidant intake and primary open‑angle glaucoma: a prospective study. Am J Epidemiol. 2003 Aug 15;158(4):337–346. doi: 10.1093/aje/kwg167.

15. Ramdas WD, Wolfs RC, Kiefte‑de Jong JC, Hofman A, de Jong PT, Vingerling JR, Jansonius NM. Nutrient intake and risk of open‑angle glaucoma: the Rotterdam Study. Eur J Epidemiol. 2012 May;27(5):385–393. doi: 10.1007/s10654‑012‑9672‑z.

16. Bernstein PS, Delori FC, Richer S, van Kuijk FJ, Wenzel AJ. The value of measurement of macular carotenoid pigment optical densities and distributions in agerelated macular degeneration and other retinal disorders. Vision Res. 2010 Mar 31;50(7):716–728. doi: 10.1016/j.visres.2009.10.014.

17. Masri A, Armanazi M, Inouye K, Geierhart DL, Davey PG, Vasudevan B. Macular Pigment Optical Density as a Measurable Modifiable Clinical Biomarker. Nutrients. 2024 Sep 27;16(19):3273. doi: 10.3390/nu16193273.

18. Эскина ЭН, Егоров ЕА, Белогурова АВ, Гветадзе АА, Степанова МА . Роль измерения оптической плотности макулярного пигмента в диагностике глазных заболеваний. Клиническая офтальмология. 2016;4:197–200. doi: 10.21689/2311‑7729‑2016‑16‑4‑197‑200.

19. Obana A, Gohto Y, Tanito M, Okazaki S, Gellermann W, Bernstein PS, Ohira A. Effect of age and other factors on macular pigment optical density measured with resonance Raman spectroscopy. Graefes Arch Clin Exp Ophthalmol. 2014 Aug;252(8):1221–1228. doi: 10.1007/s00417‑014‑2574‑x.

20. Ji Y, Zuo C, Lin M, Zhang X, Li M, Mi L, Liu B, Wen F. Macular Pigment Optical Density in Chinese Primary Open Angle Glaucoma Using the One‑Wavelength Reflectometry Method. J Ophthalmol. 2016;2016:2792103. doi: 10.1155/2016/2792103.

21. Siah WF, Loughman J, O’Brien C. Lower Macular Pigment Optical Density in Foveal‑Involved Glaucoma. Ophthalmology. 2015 Oct;122(10):2029–2037. doi: 10.1016/j.ophtha.2015.06.028.

22. Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013 Jan;32:1–21. doi: 10.1016/j.preteyeres.2012.08.003.

23. Liu Y, Lawler T, Liu Z, Thuruthumaly C, Vajaranant T, Wallace R, Tinker L, Nalbandyan M, Mares J. Low Macular Pigment Optical Density Is Associated with Manifest Primary Open‑Angle Glaucoma in Older Women. Curr Dev Nutr. 2024 May 25;8(6):103789. doi: 10.1016/j.cdnut.2024.103789.

24. Loughman J, Loskutova E, Butler JS, Siah WF, O’Brien C. Macular Pigment Response to Lutein, Zeaxanthin, and Meso‑zeaxanthin Supplementation in Open-Angle Glaucoma: A Randomized Controlled Trial. Ophthalmol Sci. 2021 Jul 11;1(3):100039. doi: 10.1016/j.xops.2021.100039.

25. Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012 May;119(5):979–986. doi: 10.1016/j.ophtha.2011.11.003.

26. Loskutova E, Nolan J, Howard A, Beatty S. Macular pigment and its contribution to vision. Nutrients. 2013 May 29;5(6):1962–1969. doi: 10.3390/nu5061962.

27. Loughman J, Davison PA, Nolan JM, Akkali MC, Beatty S. Macular pigment and its contribution to visual performance and experience. Journal of Optometry. 2010;3(2):74–90. doi: 10.1016/S1888‑4296(10)70011‑X.

28. Ozawa Y, Sasaki M, Takahashi N, Kamoshita M, Miyake S, Tsubota K. Neuroprotective effects of lutein in the retina. Curr Pharm Des. 2012;18(1):51–56. doi: 10.2174/138161212798919101.

29. Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, Nolan JM. Lutein, zeaxanthin, and meso‑zeaxanthin: The basic and clinical science underlying carotenoid‑based nutritional interventions against ocular disease. Prog Retin Eye Res. 2016 Jan;50:34–66. doi: 10.1016/j.preteyeres.2015.10.003.

30. Fung FK, Law BY, Lo AC. Lutein Attenuates Both Apoptosis and Autophagy upon Cobalt (II) Chloride‑Induced Hypoxia in Rat Műller Cells. PLoS One. 2016 Dec 9;11(12):e0167828. doi: 10.1371/journal.pone.0167828.

31. Li SY, Fung FK, Fu ZJ, Wong D, Chan HH, Lo AC. Anti‑inflammatory effects of lutein in retinal ischemic/hypoxic injury: in vivo and in vitro studies. Invest Ophthalmol Vis Sci. 2012 Sep 6;53(10):5976–5984. doi: 10.1167/iovs.12‑10007.

32. Bian Q, Gao S, Zhou J, Qin J, Taylor A, Johnson EJ, Tang G, Sparrow JR, Gierhart D, Shang F. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation‑related genes in retinal pigment epithelial cells. Free Radic Biol Med. 2012 Sep 15;53(6):1298–1307. doi: 10.1016/j.freeradbiomed.2012.06.024. Epub 2012 Jun 23. PMID: 22732187. PMCID: PMC3744865.

33. Sasaki M, Ozawa Y, Kurihara T, Kubota S, Yuki K, Noda K, Kobayashi S, Ishida S, Tsubota K. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes. Diabetologia. 2010 May;53(5):971–979. doi: 10.1007/s00125009‑1655‑6.

34. Sasaki M, Yuki K, Kurihara T, Miyake S, Noda K, Kobayashi S, Ishida S, Tsubota K, Ozawa Y. Biological role of lutein in the light‑induced retinal degeneration. J Nutr Biochem. 2012 May;23(5):423–429. doi: 10.1016/j.jnutbio.2011.01.006.

35. Sasaki M, Ozawa Y, Kurihara T, Noda K, Imamura Y, Kobayashi S, Ishida S, Tsubota K. Neuroprotective effect of an antioxidant, lutein, during retinal inflammation. Invest Ophthalmol Vis Sci. 2009 Mar;50(3):1433–1439. doi: 10.1167/iovs.08‑2493.

36. Lem DW, Gierhart DL, Davey PG. Carotenoids in the Management of Glaucoma: A Systematic Review of the Evidence. Nutrients. 2021 Jun 6;13(6):1949. doi: 10.3390/nu13061949.

37. Экгардт ВФ, Дорофеев ДА. Пространственная контрастная чувствительность при открытоугольной глаукоме и офтальмогипертензии. Вестник офтальмологии. 2020;136(1):25–35. doi: 10.17116/oftalma202013601125.

38. Siah WF, O’Brien C, Loughman JJ. Macular pigment is associated with glare‑affected visual function and central visual field loss in glaucoma. Br J Ophthalmol. 2018 Jul;102(7):929–935. doi: 10.1136/bjophthalmol‑2017‑310215.

39. Prins D, Hanekamp S, Cornelissen FW. Structural brain MRI studies in eye diseases: are they clinically relevant? A review of current findings. Acta Ophthalmol. 2016 Mar;94(2):113–121. doi: 10.1111/aos.12825.

40. Hammond BR Jr, Miller LS, Bello MO, Lindbergh CA, Mewborn C, Renzi‑Hammond LM. Effects of Lutein/Zeaxanthin Supplementation on the Cognitive Function of Community Dwelling Older Adults: A Randomized, Double‑Masked, Placebo‑Controlled Trial. Front Aging Neurosci. 2017 Aug 3;9:254. doi: 10.3389/fnagi.2017.00254.

41. Wilson LM, Tharmarajah S, Jia Y, Semba RD, Schaumberg DA, Robinson KA. The Effect of Lutein/Zeaxanthin Intake on Human Macular Pigment Optical Density: A Systematic Review and Meta‑Analysis. Adv Nutr. 2021 Dec 1;12(6):2244– 2254. doi: 10.1093/advances/nmab071.

42. Лоскутов ИА, Корнеева АВ. Роль витаминов группы В в предупреждении прогрессирования глаукомной оптической нейропатии. Национальный журнал Глаукома. 2021;20(3):87–101. doi: 10.53432/2078‑4104‑2021‑20‑3‑87‑101.

43. Morrone LA, Rombola L, Adornetto A, Corasaniti MT, Russo R. Rational Basis for Nutraceuticals in the Treatment of Glaucoma. Curr Neuropharmacol. 2018;16(7):1004–1017. doi: 10.2174/1570159X15666171109124520.

44. Hou J, Wen Y, Gao S, Jiang Z, Tao L. Association of dietary intake of B vitamins with glaucoma. Sci Rep. 2024 Apr 12;14(1):8539. doi: 10.1038/s41598‑024‑58526‑5.

45. Ramdas WD, Schouten JSAG, Webers CAB. The Effect of Vitamins on Glaucoma: A Systematic Review and Meta‑Analysis. Nutrients. 2018 Mar 16;10(3):359. doi: 10.3390/nu10030359.

46. Calderón‑Ospina CA, Nava‑Mesa MO. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther. 2020 Jan;26(1):5–13. doi: 10.1111/cns.13207.

47. Lee JY, Kim JM, Lee KY, Kim B, Lee MY, Park KH. Relationships between Obesity, Nutrient Supply and Primary Open Angle Glaucoma in Koreans. Nutrients. 2020 Mar 24;12(3):878. doi: 10.3390/nu12030878.

48. Nicola CA, Marinescu MC, Firan AM, Naidin MS, Ciuluvica RC, Rosu MM, Meca AD, Bogdan M, Turcu‑Stiolica A. Systematic Review and Meta‑Analysis on the Association Between Daily Niacin Intake and Glaucoma. Nutrients. 2024 Oct 23;16(21):3604. doi: 10.3390/nu16213604.

49. Taechameekietichai T, Chansangpetch S, Peerawaranun P, Lin SC. Association between Daily Niacin Intake and Glaucoma: National Health and Nutrition Examination Survey. Nutrients. 2021 Nov 26;13(12):4263. doi: 10.3390/nu13124263.

50. Lee SY, Tseng VL, Kitayama K, Avallone TJ, Yu F, Pan D, Caprioli J, Coleman AL. Associations Between Niacin Intake and Glaucoma in the National Health and Nutrition Examination Survey. J Glaucoma. 2023 Jun 1;32(6):443–450. doi: 10.1097/IJG.0000000000002216.

51. Cimaglia G, Tribble JR, Votruba M, Williams PA, Morgan JE. Oral nicotinamide provides robust, dose‑dependent structural and metabolic neuroprotection of retinal ganglion cells in experimental glaucoma. Acta Neuropathol Commun. 2024 Aug 23;12(1):137. doi: 10.1186/s40478‑024‑01850‑8.

52. Yang Z, Zhang J, Zheng Y. Higher vitamin B6 dietary consumption is associated with a lower risk of glaucoma among United States adults. Front Nutr. 2024 Jun 5;11:1363539. doi: 10.3389/fnut.2024.1363539.

53. Gustavsson ST, Enz TJ, Tribble JR, Nilsson M, Lindqvist A, Lindén C, Hagström A, Rutigliani C, Lardner E, Stålhammar G, Williams PA, Jóhannesson G. Nicotinamide Prevents Retinal Vascular Dropout in a Rat Model of Ocular Hypertension and Supports Ocular Blood Supply in Glaucoma Patients. Invest Ophthalmol Vis Sci. 2023 Nov 1;64(14):34. doi: 10.1167/iovs.64.14.34.

54. Gemae MR, Bassi MD, Wang P, Chin EK, Almeida DRP. NAD+ and Niacin Supplementation as Possible Treatments for Glaucoma and Age‑Related Macular Degeneration: A Narrative Review. Nutrients. 2024 Aug 21;16(16):2795. doi: 10.3390/nu16162795.

55. Kumari N, Cher J, Chua E, Hamzah H, Wong TY, Cheung CY. Association of serum lutein and zeaxanthin with quantitative measures of retinal vascular parameters. PLoS One. 2018 Sep 27;13(9):e0203868. doi: 10.1371/journal.pone.0203868.

56. Harris A, Siesky B, Huang A, Do T, Mathew S, Frantz R, Gross J, Januleviciene I, Verticchio Vercellin AC. Lutein Complex Supplementation Increases Ocular Blood Flow Biomarkers in Healthy Subjects. Int J Vitam Nutr Res. 2019 Jul;89(1–2):5–12. doi: 10.1024/0300‑9831/a000576.

57. Lawler T, Mares JA, Liu Z, Thuruthumaly C, Etheridge T, Vajaranant TS, Domalpally A, Hammond BR, Wallace RB, Tinker LF, Nalbandyan M, Klein BEK, Liu Y; Carotenoids in Age‑Related Eye Disease Study Investigators; Second Carotenoids in Age‑Related Eye Disease Study Research Group. Association of macular pigment optical density with retinal layer thicknesses in eyes with and without manifest primary open‑angle glaucoma. BMJ Open Ophthalmol. 2023 Oct;8(1):e001331. doi: 10.1136/bmjophth‑2023‑001331.


Рецензия

Для цитирования:


Лоскутов И.А., Андрюхина О.М. Изменение оптической плотности макулярного пигмента как новый фактор риска первичной открытоугольной глаукомы. Офтальмология. 2025;22(2):376-382. https://doi.org/10.18008/1816-5095-2025-2-376-382

For citation:


Loskutov I.A., Andryukhina O.M. Changes in Macular Pigment Optical Density as a New Risk Factor for Primary Open-angle Glaucoma. Ophthalmology in Russia. 2025;22(2):376-382. (In Russ.) https://doi.org/10.18008/1816-5095-2025-2-376-382

Просмотров: 19


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)