Preview

Ophthalmology in Russia

Advanced search

Comparative Evaluation of the Effectiveness of Standard and Non-standard Computer Perimetry Methods in the Early Diagnosis of Glaucoma

https://doi.org/10.18008/1816-5095-2025-2-383-390

Abstract

Purpose: tо compare the effectiveness of standard automated perimetry (SAP) and two non-standard perimetry methods in the diagnosis of the early stage primary open-angle glaucoma (POAG).

Patients and methods. The study involved 18 patients (32 eyes) with the early POAG, 10 women, 8 men (average age of 56.2 ± 1.4 years). The control group included 32 healthy people (32 eyes), (average age of 56.4 ± 3.9 years). In addition to the routine ophthalmic examination all subjects underwent SAP (Octopus 900, threshold strategy “G TOP”) and two methods of non-standard perimetry — the author’s own modification of Frequency Doubling Technology (FDT) Perimetry (threshold strategies “FDT-16” and “FDT-64”) and Pulsar perimetry (Octopus 600). Morphometric assessment of the optic nerve head was performed using stereoophthalmoscopy and retinotomography (Heidelberg Retina Tomograph 3 and RTVue FD-OCT). Optical coherence tomography was also used to assess the parameters of the retinal ganglion cell complex in the macular region.

Results. Evaluating the sensitivity level of these 4 compared strategies (“FDT-16”, “FDT-64”, “Pulsar” Octopus 600 and “G TOP” Octopus 900) in patients with the early stage of POAG by mean MD index (87.1, 93.55, 54.84 and 80.65 % respectively) and by mean number of 10×10° squares with scotomas in the central visual field (90.32, 98.77, 51.61, and 83.87 % respectively) showed that both threshold FDT perimetry strategies were 7 to 15 % higher than the sensitivity of Octopus 900 (“G TOP”) and almost 2 times higher than the sensitivity of Octopus 600 (“Pulsar”). The specificity level of all three threshold strategies (“FDT-16”, “FDT-64” and “Pulsar”) of both non-standard perimetry methods was 100 %, and specificity level of SAP was 96.77 %. The correlation between the values of the MD index and the number of squares with scotomas in the central visual field according to the SAP data and all three threshold strategies data of the two non-standard perimetry methods was moderate and statistically significant.

Conclusion. For diagnosis of early POAG a combination of standard and non-standard computer perimetry methods is advisable. Both FDT perimetry strategies had a significant advantage in the sensitivity level of their results compared to Pulsar perimetry data.

About the Authors

I. L. Simakova
S.M. Kirov Military Medical Academy
Russian Federation

Simakova Irina L. MD, Professor of the Ophthalmology Department 

Botkinskaya str., 21, Saint Petersburg, 194044



A. N. Kulikov
S.M. Kirov Military Medical Academy
Russian Federation

Kulikov Aleksey N. MD, Professor, Head of the Ophthalmology Department 

Botkinskaya str., 21, Saint Petersburg, 194044



S. A. Serdyukova
S.M. Kirov Military Medical Academy
Russian Federation

Serdyukova Svetlana A. PhD, Head of the Ophthalmology Department Clinic 

Botkinskaya str., 21, Saint Petersburg, 194044



I. A. Tikhonovskay
S.M. Kirov Military Medical Academy
Russian Federation

Tikhonovskay Irina A. PhD, ophthalmologist of the Ophthalmology clinic 

Botkinskaya str., 21, Saint Petersburg, 194044



References

1. Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107(5):453–464. doi: 10.1016/0002‑9394(89)90488‑1.

2. Silverman SE, Trick GL, Hart WM Jr. Motion perception is abnormal in primary open‑angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1990;31(4):722–729.

3. Bullimore MA, Wood JM, Swenson K. Motion perception in glaucoma. Invest Ophthalmol Vis Sci. 1993;34(13):3526–3533.

4. Tyler CW. Specific deficits of flicker sensitivity in glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci. 1981;20(2):204–212.

5. Alward WL. Frequency doubling technology perimetry for the detection of glaucomatous visual field loss. Am J Ophthalmol. 2000;129(3):376–378. doi: 10.1016/s0002‑9394(00)00352‑4.

6. Swanson WH, Felius J, Pan F. Perimetric defects and ganglion cell damage: interpreting linear relations using a two‑stage neural model. Invest Ophthalmol Vis Sci. 2004;45(2):466–472. doi: 10.1167/iovs.03‑0374.

7. Simakova IL, Volkov VV, Boiko EV. The results of developed method of frequencydoubling technology (FDT) perimetry in comparison with the results of the original FDT perimetry. Glaucoma. 2010;1:5–11 (In Russ.).

8. Vidal‑Fernández A, García Feijoó J, González‑Hernández M, González De La Rosa M, García Sánchez J. Primeros hallazgos con perimetría pulsar en pacientes hipertensos oculares [Initial findings with pulsar perimetry in patients with ocular hypertension]. Arch Soc Esp Oftalmol. 2002;77(6):321–326.

9. Serdyukova SА, Simakova IL. Computer perimetry in the diagnosis of primary open‑angle glaucoma. Eye statements. 2018;11(1):54–65 (In Russ.). doi: 10.17816/OV11154–65.

10. Simakova IL, Tikhonovskaya IA. Еvaluation of the effectiveness of frequency doubling technology perimetry in the diagnosis of optic neuropathies. National Journal of Glaucoma. 2022;21(1):23–36 (In Russ.).

11. Burgansky‑Eliash Z, Wollstein G, Patel A, Bilonick RA, Ishikawa H, Kagemann L, Dilworth WD, Schuman JS. Glaucoma detection with matrix and standard achromatic perimetry. Br J Ophthalmol. 2007;91(7):933–938. doi: 10.1136/bjo.2006.110437.

12. Han S, Baek SH, Kim US. Comparison of Three Visual Field Tests in Children: Frequency Doubling Test, 24‑2 and 30‑2 SITA Perimetry. Semin Ophthalmol. 2017;32(5):647–650. doi: 10.3109/08820538.2016.1157611.

13. Casson RJ, James B. Effect of cataract on frequency doubling perimetry in the screening mode. J Glaucoma. 2006;15(1):23–25. doi: 10.1097/01.ijg.0000197089.

14. Erichev VP, Petrov SYu, Kozlova IV, Makarova AS, Reshchikova VS. Modern methods of functional diagnostics and monitoring of glaucoma. Part 2. Diagnosis of structural damage of the retina and optic nerve. National Journal glaucoma. 2015;14(3):72–79 (In Russ.).

15. Lamparter J, Russell RA, Schulze A, Schuff AC, Pfeiffer N, Hoffmann EM. Structure‑function relationship between FDF, FDT, SAP, and scanning laser ophthalmoscopy in glaucoma patients. Invest Ophthalmol Vis Sci. 2012;53(12):7553–7559. doi: 10.1167/iovs.12‑10892.

16. Kanadani FN, Mello PA, Dorairaj SK, Kanadani TC. Frequency‑doubling technology perimetry and multifocal visual evoked potential in glaucoma, suspected glaucoma, and control patients. Clin Ophthalmol. 2014;8:1323–1330. doi: 10.2147/OPTH.S64684.

17. Boland MV, Gupta P, Ko F, Zhao D, Guallar E, Friedman DS. Evaluation of Frequency‑Doubling Technology Perimetry as a Means of Screening for Glaucoma and Other Eye Diseases Using the National Health and Nutrition Examination Survey. JAMA Ophthalmol. 2016;134(1):57–62. doi: 10.1001/jamaophthalmol.2015.4459.

18. Camp AS, Weinreb RN. Will Perimetry Be Performed to Monitor Glaucoma in 2025? Ophthalmology. 2017;124(12S):71–75. doi: 10.1016/j.ophtha.2017.04.009.

19. Patel A, Wollstein G, Ishikawa H, Schuman JS. Comparison of visual field defects using matrix perimetry and standard achromatic perimetry. Ophthalmology. 2007; 114(3):480–487.

20. McManus JR, Netland PA. Screening for glaucoma: rationale and strategies. Curr Opin Ophthalmol. 2013;24(2):144–149. doi: 10.1097/ICU.0b013e32835cf078.

21. Terauchi R, Wada T, Ogawa S, Kaji M, Kato T, Tatemichi M, Nakano T. FDT Perimetry for Glaucoma Detection in Comprehensive Health Checkup Service. J Ophthalmol. 2020;2020:4687398. doi: 10.1155/2020/4687398.

22. Simakova IL, Kulikov AN, Serdiukova SA, Gorbacheva KS, Grigoryan LA. New possibilities of perimetry in screening and early diagnosis of glaucoma. National Journal glaucoma. 2023;22(4):33–43 (In Russ.). doi: 10.53432/2078‑4104‑2023‑224‑33‑43.

23. 31 González‑Hernández M, García‑Feijoó J, Mendez MS, de la Rosa MG. Combined spatial, contrast, and temporal functions perimetry in mild glaucoma and ocular hypertension. Eur J Ophthalmol. 2004;14(6):514–522.

24. Khanna V, Joon A, Viswanath S, Chhabra K. Perimetry‑Recent Advances. Delhi Journal of Ophthalmology. 2022;32(4):15–24.

25. Chen HC, Chou MC, Lee MT, Lee CY, Yang CN, Liu CH, Chao SC. The Diagnostic Value of Pulsar Perimetry, Optical Coherence Tomography, and Optical Coherence Tomography Angiography in Pre‑Perimetric and Perimetric Glaucoma. J Clin Med. 2021;10(24):5825. doi: 10.3390/jcm10245825.

26. Hirasawa K, Yamaguchi J, Nagano K, Kanno J, Kasahara M, Shoji N. Degree of loss in the tissue thickness, microvascular density, specific perimetry and standard perimetry in early glaucoma. BMJ Open Ophthalmol. 2023;8(1):e001256. doi: 10.1136/bmjophth‑2023‑001256.

27. Zeppieri M, Brusini P, Parisi L, Johnson CA, Sampaolesi R, Salvetat ML. Pulsar perimetry in the diagnosis of early glaucoma. Am J Ophthalmol. 2010;149(1):102– 112. doi: 10.1016/j.ajo.2009.07.020.

28. Grigoryev SG, Lobzin YuV, Skripchenko NV. The role and place of logistic regression and ROC analysis in solving medical diagnostic task. Journal Infectology. 2016;8(4):36–45 (In Russ.). doi: 10.22625/2072‑6732‑2016‑8‑4‑36‑45.

29. Angelov B, Petrova K. Optical coherence tomography and its role in the diagnosis of ocular hypertension, preperimetric and perimetric glaucoma. Ophthalmology in Russia. 2015;12(1):46–56 (In Russ.). doi: 10.18008/1816‑5095‑2015‑1‑46‑56.

30. Begum VU, Jonnadula GB, Yadav RK, Addepalli UK, Senthil S, Choudhari NS, Garudadri CS, Rao HL. Scanning the macula for detecting glaucoma. Indian J Ophthalmol. 2014;62(1):82–87. doi: 10.4103/0301‑4738.126188.

31. Shakhalova ÀP, Shevchenko MV, Antipenko LA, Kudryavcev YuM. Optical coherent tomography of ganglion cell complex in diagnostic of primary open angle glaucoma patients. Practical medicine. 2012;1(4(59):256–259 (In Russ.).

32. Na JH, Sung KR, Lee JR, Lee KS, Baek S, Kim HK, Sohn YH. Detection of glaucomatous progression by spectral‑domain optical coherence tomography. Ophthalmology. 2013;120(7):1388–1395. doi: 10.1016/j.ophtha.2012.12.014.

33. Aydogan T, Akçay BİS, Kardeş E, Ergin A. Evaluation of spectral domain optical coherence tomography parameters in ocular hypertension, preperimetric, and early glaucoma. Indian J Ophthalmol. 2017;65(11):1143–1150. doi: 10.4103/ijo.IJO_157_17.

34. Seth NG, Kaushik S, Kaur S, Raj S, Pandav SS. 5‑year disease progression of patients across the glaucoma spectrum assessed by structural and functional tools. Br J Ophthalmol. 2018;102(6):802–807. doi: 10.1136/bjophthalmol‑2017‑310731.

35. Eura M, Matsumoto C, Hashimoto S, Okuyama S, Takada S, Nomoto H, Tanabe F, Shimomura Y. Test Conditions in Macular Visual Field Testing in Glaucoma. J Glaucoma. 2017;26(12):1101–1106. doi: 10.1097/IJG.0000000000000782.


Review

For citations:


Simakova I.L., Kulikov A.N., Serdyukova S.A., Tikhonovskay I.A. Comparative Evaluation of the Effectiveness of Standard and Non-standard Computer Perimetry Methods in the Early Diagnosis of Glaucoma. Ophthalmology in Russia. 2025;22(2):383-390. (In Russ.) https://doi.org/10.18008/1816-5095-2025-2-383-390

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)