Preview

Ophthalmology in Russia

Advanced search

Analysis of the Optic Nerve Head and Macular Ganglion Cell Complex Using Optical Coherence Tomography in Patients in the Post-COVID Period

https://doi.org/10.18008/1816-5095-2025-2-391-397

Abstract

Objective. To study the condition of the optic nerve head and the retinal ganglion cell complex (macula) using optical coherence tomography in patients in the post-COVID period.

Patients and methods. A total of 30 people (60 eyes) aged 61.7 ± 14.2 years on average were examined. All subjects had a history of a new coronavirus infection (COVID-19). The duration of the disease ranged from 1.5 to 48 (26.9 ± 12.7 on average) months. The parameters of the optic nerve head and macula were assessed using the Optopol SOCT Copernicus REVO NX device (Poland).

Results. Using OCT, the area of the optic nerve head, the area of the retinal ganglion cell complex, and the area of the optic nerve head excavation were significantly higher in patients in the post-COVID period compared to normal values (p < 0.05). The excavation volume of the optic disc of the left eye in patients in the post-COVID period was significantly lower than the norm (0.08 ± 0.07 and 0.15 ± 0.07, p = 0.003, respectively). The thickness of the peripapillary retinal nerve fiber layer in the upper quadrant of the right eye significantly exceeded normal values and amounted to 130.6 ± 17.7 (p = 0.03). Qualitative analysis of the state of the ganglion cell layer and the inner plexiform layer of the retina of the macula in individuals who had acute coronavirus infection showed that single areas of thinning were detected in 17 (28.3 %) of the 60 eyes examined, multiple — in 33 (55%).

Conclusion. Of particular interest is the study using optical coherence tomography of the state of the optic nerve head, nerve fiber layer, and retinal ganglion cell complex of the macular zone in a significant number of patients who have had COVID-19. The obtained changes in the morphometric parameters of the fundus may indirectly indicate the neurotropic effect of the COVID-19 virus on the fundus structures, and requires examination of patients after infection to develop a rehabilitation system.

About the Authors

I. V. Filonenko
United Hospital with a Polyclinic of the Presidential Executive Office of the Russian Federation
Russian Federation

Filonenko Igor V. PhD, head of the Ophthalmology Department, ophthalmologist of the highest category 

Michurinsky ave., 6, Moscow, 119285



Ya. V. Dorofeeva
United Hospital with a Polyclinic of the Presidential Executive Office of the Russian Federation
Russian Federation

Dorofeeva Yana V. ophthalmologist of the Ophthalmological Department 

Michurinsky ave., 6, Moscow, 119285



E. B. Myakoshina
United Hospital with a Polyclinic of the Presidential Executive Office of the Russian Federation
Russian Federation

Myakoshina Elena B. MD, ophthalmologist of the highest category 

Michurinsky ave., 6, Moscow, 119285



References

1. Lvov DK, Kolobukhina LV, Deryabin PG. Coronavirus infection. Severe acute respiratory syndrome. Infectious diseases: news, opinions, training. 2015;4:35–42 (In Russ.).

2. Méndez‑Guerrero A, Laespada‑García MI, Gómez‑Grande A, Ruiz‑Ortiz M, Blanco‑Palmero VA, Azcarate‑Diaz FJ, Rábano‑Suárez P, Álvarez‑Torres E, de Fuenmayor‑Fernández de la Hoz CP, Vega Pérez D, Rodríguez‑Montalbán R, Pérez‑Rivilla A, Sayas Catalán J, Ramos‑González A, González de la Aleja J. Acute hypokinetic‑rigid syndrome following SARS‑CoV‑2 infection. Neurology. 2020;13;95(15):e2109– e2118. doi: 10.1212/WNL.0000000000010282.

3. Khodanovych MYu, Kamaeva DA, Naumova AV. The role of demyelination in the persistence of neurological and mental disorders after COVID‑19. Int J Mol Sci. 2022;23(19):11291 (In Russ.). doi: 10.3390/ijms231911291.

4. Khazaal S, Harb J, Rima M, Annweiler C, Wu Y, Cao Z, Abi Khattar Z, Legros C, Kovacic H, Fajloun Z, Sabatier JM. The Pathophysiology of Long COVID throughout the Renin‑Angiotensin System. Molecules. 2022;2;27(9):2903. doi: 10.3390/molecules27092903.

5. Neroev VV, Kiseleva TN, Eliseeva EK. Ophthalmological aspects of coronavirus infection. Russian Ophthalmological Journal. 2021;14(1):7–14 (In Russ.). doi: 10.21516/2072‑0076‑2021‑14‑1‑7‑14.

6. Tisdale AK, Chwalisz BK. Neuro‑ophthalmic manifestations of coronavirus disease 19. Curr Opin Ophthalmol. 2020;31(6):489–494. doi: 10.1097/ICU.0000000000000707.

7. Insausti‑García A, Reche‑Sainz JA, Ruiz‑Arranz C, López Vázquez Á, Ferro‑Osuna M. Papillophlebitis in a COVID‑19 patient: Inflammation and hypercoagulable state. Eur J Ophthalmol. 2022;32(1):NP168–NP172. doi: 10.1177/1120672120947591.

8. Li RR, Zhang BM, Rong SR, Li H, Shi PF, Wang YC. Fifteen acute retrobulbar optic neuritis associated with COVID‑19: A case report and review of literature. World J Clin Cases. 2024; 26;12(21):4827–4835. doi: 10.12998/wjcc.v12.i21.4827.

9. Kurysheva NI, Evdokimova OA, Nikitina AD. Visual organ damage in COVID‑19. Part 2: complications from the posterior segment of the eye, neuro‑ophthalmological manifestations, vaccination and risk factors. Russian Ophthalmologi ‑ cal Journal. 2023;16(1):157–167 (In Russ.). doi: 10.21516/2072‑0076‑2023‑161‑157‑167

10. Saakyan S.. Myakoshina EB, Polyakov VG, Ushakova TL, Ismailova DM. Optical coherence tomography in preclinical diagnosis of optic nerve disk changes after chemotherapy in children with retinoblastoma. Russian Ophthalmological Journal. 2020;13(2):53–58 (In Russ.). doi: 10.21516/2072‑0076‑2020‑13‑2‑53‑58.

11. Xia X, Wang Y, Zheng J. COVID‑19 and Alzheimer’s disease: how one crisis worsens the other. Transl Neurodegener. 2021; 30;10(1):15. doi: 10.1186/s40035‑021‑00237‑2.

12. Amadoro G, Latina V, Stigliano E, Micera A. COVID‑19 and Alzheimer’s Disease Share Common Neurological and Ophthalmological Manifestations: A Bidirectional Risk in the Post‑Pandemic Future. Cells. 2023; 10;12(22):2601. doi: 10.3390/cells12222601.

13. Tiganov AS, Akopyan VS, Gavrilova SI, Semenova NS, Fedorova YaB, Gurova EV, Filonenko IV. Thinning of the retinal ganglion cell layer in patients with Alzheimer’s disease and mild cognitive decline: diagnostic value of spectral optical coherence tomography. Bulletin of OSU. 2013;4(153):263–266 (In Russ.).

14. Lee EJ, Han JC, Park DY, Kee C. A neuroglia‑based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res. 2020;77:100840. doi: 10.1016/j.preteyeres.2020.100840.

15. Song E, Zhang C, Israelow B, Lu‑Culligan A, Prado AV, Skriabine S, Lu P, Weizman OE, Liu F, Dai Y, Szigeti‑Buck K, Yasumoto Y, Wang G, Castaldi C, Heltke J, Ng E, Wheeler J, Alfajaro MM, Levavasseur E, Fontes B, Ravindra NG, Van Dijk D, Mane S, Gunel M, Ring A, Kazmi SAJ, Zhang K, Wilen CB, Horvath TL, Plu I, Haik S, Thomas JL, Louvi A, Farhadian SF, Huttner A, Seilhean D, Renier N, Bilguvar K, Iwasaki A. Neuroinvasion of SARS‑CoV‑2 in human and mouse brain. J Exp Med. 2021 Mar 1;218(3):e20202135. doi: 10.1084/jem.20202135.

16. Sharifkashani S, Bafrani MA, Khaboushan AS, Pirzadeh M, Kheirandish A, Bali HY, Hessami A. Saghazadeh A, Rezaei N. Angiotensin‑converting enzyme 2 (ACE2) receptor and SARS‑CoV‑2: Potential therapeutic targeting. Eur. J. Pharmacol. 2020;884:173455. doi: 10.1016/j.ejphar.2020.173455.

17. Rathnasinghe R, Strohmeier S, Amanat F, Gillespie VL, Krammer F, García‑Sastre A, Coughlan L, Schotsaert M, Uccellini MB. Comparison of transgenic and adenovirus hACE2 mouse models for SARS‑CoV‑2 infection. Emerg Microbes Infect. 2020;9(1):2433–2445. doi: 10.1080/22221751.2020.1838955.

18. Pacheco‑Herrero M, Soto‑Rojas LO, Harrington CR, Flores‑Martinez YM, VillegasRojas MM, León‑Aguilar AM, Martínez‑Gómez PA, Campa‑Córdoba BB, ApátigaPérez R, Corniel‑Taveras CN, Dominguez‑García JJ, Blanco‑Alvarez VM, LunaMuñoz J. Elucidating the Neuropathologic Mechanisms of SARS‑CoV‑2 Infection. Front Neurol. 2021;12;12:660087. doi: 10.3389/fneur.2021.660087.

19. Dewanjee S, Vallamkondu J, Kalra RS, Puvvada N, Kandimalla R, Reddy PH. Emerging COVID‑19 Neurological Manifestations: Present Outlook and Potential Neurological Challenges in COVID‑19 Pandemic. Mol Neurobiol. 2021 Sep;58(9):4694– 4715. doi: 10.1007/s12035‑021‑02450‑6.

20. Sadovskaya OP, Dravitsa LV. Morphometric parameters of the optic nerve head in patients with symptomatic ophthalmic hypertension and secondary glaucoma developed against the background of endocrine ophthalmopathy. Problems of Health and Ecology. 2022;19(2):57–62. doi: 10.51523/2708‑6011.2022‑19‑2‑07.

21. Lee EJ, Han JC, Park DY, Kee C. A neuroglia‑based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res. 2020;77:100840. doi: 10.1016/j.preteyeres.2020.100840.

22. Frohman EM, Dwyer MG, Frohman T, Cox JL, Salter A, Greenberg BM, Hussein S, Conger A, Calabresi P, Balcer LJ, Zivadinov R. Relationship of optic nerve and brain conventional and non‑conventional MRI measures and retinal nerve fiber layer thickness, as assessed by OCT and GDx: a pilot study. J Neurol Sci. 2009; 15;282(1–2):96–105. doi: 10.1016/j.jns.2009.04.010.

23. Eliseeva NM, Serova NK, Erichev VP, Panyushkina LA. Structural retinal and optic nerve changes in patients with post‑geniculate visual pathway damage. Russian Annals of Ophthalmology. 2017;133(4):25–30 (In Russ.) doi: 10.17116/oftalma2017133425‑30.


Review

For citations:


Filonenko I.V., Dorofeeva Ya.V., Myakoshina E.B. Analysis of the Optic Nerve Head and Macular Ganglion Cell Complex Using Optical Coherence Tomography in Patients in the Post-COVID Period. Ophthalmology in Russia. 2025;22(2):391-397. (In Russ.) https://doi.org/10.18008/1816-5095-2025-2-391-397

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)