Preview

Ophthalmology in Russia

Advanced search

Сomparison of Kane and Barrett Toric Formulas using Different Keratometric Parameters

https://doi.org/10.18008/1816-5095-2025-3-558-564

Abstract

Purpose. To compare Kane and Barrett toric formulas using different keratometric parameters. Material and methods. The study included 31 patients (31 eyes) who underwent phacoemulsification (PE) with implantation of the Clareon® Toric CNW0T2-T9 TIOL (Alcon, USA). Biometry was performed on IOL-Master 700 (Carl Zeiss, Germany), and keratopography on CASIA OCT SS-1000 device (Tomey, Japan). TIOL was calculated using Kane and Barrett toric calculator (BTC) formulas using various keratometric data. Mean centroid error (MCE) and mean absolute centroid error (MACE), frequency of target cylinder hitting within ±0.25, ±0.50, ±0.75, ±1.00, and over 1.00 D were compared. Results. The lowest MCE (0.19 ± 0.92 D) and MACE (0.82 ± 0.43 D), as well as a higher frequency of target cylinder hitting (90%) were shown by Kane formula when IOL-Master keratometric values were used. BTC was slightly less accurate — MCE (0.27 ± 0.96 D), MACE (0.86 ± 0.48 D), the frequency of target cylinder hitting within ±1.00 D was 84% when anterior corneal surface data by IOL-Master and the posterior corneal values by CASIA topographer were used. Conclusion. Kane formula demonstrates the best refractive results for TIOL calculation using standard IOL-Master keratometry data.

About the Authors

D. F. Belov
Saint-Petersburg Multifield Hospital No. 2; Saint Petersburg State University
Russian Federation

Dmitrii F. Belov - PhD, chief of Ophthalmological department No. 1.

Uchebniy lane, 5, Saint-Petersburg, 194354; University emb., 7/9, Saint-Petersburg, 199034



V. P. Nikolaenko
Saint-Petersburg Multifield Hospital No. 2; Saint Petersburg State University
Russian Federation

Vadim P. Nikolaenko - MD, Professor of the Otorhinolaryngology and ophthalmology department.

Uchebniy lane, 5, Saint-Petersburg, 194354; University emb., 7/9, Saint-Petersburg, 199034



A. I. Sorokopudova
Saint Petersburg State University
Russian Federation

Anastasia I. Sorokopudova – student.

University emb., 7/9, Saint-Petersburg, 199034



References

1. Melles RB, Kane JX, Olsen T, Chang WJ. Update on Intraocular Lens Calculation Formulas. Ophthalmology. 2019 Sep;126(9):1334–1335. doi: 10.1016/j.ophtha.2019.04.011.

2. Belov DF, Nikolaenko VP, Kovaleva VV. Evaluation and refractive results comparison of MIOLSOFT213 IOL implantation with foreign models. Ophthalmology in Russia. 2024;21(2):289–295 (In Russ.). doi: 10.18008/1816509520242289295.

3. Srinivasan S. ESCRS Clinical Trends Survey 2017, Toric IOL decisions. Eyeworld Supplements. 2017:5–6.

4. Can İ, Takmaz T, Özdamar A, Kamış Ü, Aydın Akova Y, Arslan OŞ, Baykara M, Devranoğlu K, Günenç Ü, Mutlu FM, Özcan AA, Taşındı E. Evaluation of the cataract surgery 2018 survey in terms of achieving refractive cataract surgery targets. Turk J Ophthalmol. 2021 Feb 25;51(1):7–18. doi: 10.4274/tjo.galenos.2020.46020.

5. Belov DF, Nikolaenko VP, Alekseeva AG. Residual astigmatism calculation method in implantation of a monofocal non-toric intraocular lens. Ophthalmology journal. 2023;16(3):45–52 (In Russ.). doi: 10.17816/OV321678.

6. Iolformula.com. URL: https://www.iolformula.com/ (accessed: 22.03.2025).

7. Calc.apacrs.org. URL: https://calc.apacrs.org/toric_calculator20/Toric%20Calculator.aspx (accessed: 22.03.2025)

8. Iolcon.org. URL: https://iolcon.org/lensesTable.php?manufacturer%5B%5D=Alcon&action=search (аccessed: 22.03.2025).

9. Hoffer KJ, Savini G. Update on intraocular lens power calculation study protocols: the better way to design and report clinical trials. Ophthalmology. 2021 Nov;128(11):e115–e120. doi: 10.1016/j.ophtha.2020.07.005.

10. Abulafia A, Koch DD, Holladay JT. Pursuing perfection in intraocular lens calculations: IV. Rethinking astigmatism analysis for intraocular lens-based surgery: Suggested terminology, analysis, and standards for outcome reports. J Cataract Refract Surg. 2018;44(10):1169–1174. doi: 10.1016/j.jcrs.2018.07.027.

11. McLintock C, Uprety S, McKelvie J. Corneal astigmatism agreement between a swept-source ocular coherence tomography and Scheimpflug-Placido based optical biometers. Int Ophthalmol. 2025 Mar 6;45(1):83. doi: 10.1007/s10792-025-03435-3.

12. Kohnen T, Naeser K, Holladay JT. Standards for analyzing astigmatic outcomes Part I: Astigmatism basics. J Cataract Refract Surg. 2025 Mar 3. doi: 10.1097/j.jcrs.0000000000001644.

13. Stopyra W, Voytsekhivskyy O, Grzybowski A. Accuracy of 7 artificial intelligence-based intraocular lens power calculation formulas in medium-long eyes: 2-center study. Can J Ophthalmol. 2025 Feb 26:S0008-4182(25)00039-0. doi: 10.1016/j.jcjo.2025.01.020.

14. Stopyra W, Voytsekhivskyy O, Grzybowski A. Prediction of seven artificial intelligence-based intraocular lens power calculation formulas in medium-long Caucasian eyes. Life (Basel). 2025 Jan 1;15(1):45. doi: 10.3390/life15010045.

15. Romero D, Cárceles Montoya A, Alió JL. Multiformula Prediction Range: a univariate predictor of IOL Power Calculation Accuracy. J Cataract Refract Surg. 2025 Mar 24. doi: 10.1097/j.jcrs.0000000000001658.

16. Belov DF, Nikolaenko VP. Alternative method of intraocular lens power calculation in eyes with short axial length. Russian Annals of Ophthalmology. 2022;138(3):24– 28 (In Russ.). doi: 10.17116/oftalma202213803124.

17. Oh R, Oh JY, Choi HJ. Evaluation of prediction errors in nine intraocular lens calculation formulas using an explainable machine learning model. BMC Ophthalmol. 2024 Dec 19;24(1):531. doi: 10.1186/s12886-024-03801-2.

18. Belov DF, Nikolaenko VP, Dmitrieva DE. Accuracy of 10 Intraocular Lens Power Calculation Formulas. Ophthalmology in Russia. 2025;22(1):29–34 (In Russ.). doi: 10.18008/1816-5095-2025-1-29-34.

19. Boiko EV, Shukhaev SV, Kudlakhmedov SS, Litvin IB. Comparative evaluation of surgical correction of corneal astigmatism by toric IOL implantation using various keratometric data and calculation methods. Fyodorov Journal of Ophthalmic Surgery. 2022;4:36–44 (In Russ.). doi: 10.25276/0235-4160-2022-4-36-44.

20. Yang S, Han H, Lee HS. Comparative accuracy of five modern toric intraocular lens formulas. Am J Ophthalmol. 2025 Feb 24;274:1–8. doi: 10.1016/j.ajo.2025.02.028.

21. Liu C, Wang M, Long D. Comparison of the accuracy of toric intraocular lens formulas used by the online calculator of the European society of cataract and refractive surgeons. J Refract Surg. 2025 Feb;41(2):e120–e130. doi: 10.3928/1081597X-20241219-01.

22. Shukhaev SV. Selection of keratometric data for the IOL toricity calculation. Fyodorov Journal of Ophthalmic Surgery. 2023;3S:27–36 (In Russ). doi: 10.25276/0235-4160-2023-3S-27-36.


Review

For citations:


Belov D.F., Nikolaenko V.P., Sorokopudova A.I. Сomparison of Kane and Barrett Toric Formulas using Different Keratometric Parameters. Ophthalmology in Russia. 2025;22(3):558-564. (In Russ.) https://doi.org/10.18008/1816-5095-2025-3-558-564

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)