Crosslinking: methodological approaches and application in ophthalmology
https://doi.org/10.18008/1816-5095-2016-2-56-61
Abstract
Crosslinking of the cornea was developed at the end of the last century and radically changed approaches to the treatment of progressive corneal ectasia. To achieve the strengthening of the corneal tissue irradiation with ultraviolet light And is combined with the use of Riboflavin. Riboflavin plays a role of a photosensitizer in the process of photopolymerization and ultraviolet irradiation increases the formation of inter — and intrafibrillary covalent bonds. Standard Protocol operation involves the scarification of epithelium, a 30‑minute application of 0.1 % solution of Riboflavin with subsequent 30 min. irradiation with ultraviolet light with A wavelength of 370 nm and 3 mW / cm2. The lack of effect of routine procedures is defined as the increase in refractive power of the cornea by 1 Diopter. after treatment and observed in 8.1‑33.3 % of cases. A relatively frequent complication of the standard procedure of crosslinking (10‑90 %) is corneal haze. A number of cases of infectious keratitis, including bacterial, protozoan and fungal forms is registered. Rare complications after standard procedure of crosslinking are diffuse lamellar keratitis, melting corneal and endothelial-epithelial dystrophy. After instillation of Riboflavin its diffusion in the corneal stroma is limited by a dense contacts between epithelial cells, resulting in crosslinking often resort to preliminary scarification of epithelium. However, this manipulation is the cause of the complications of crosslinking, as intra — and postoperative pain, infectious keratitis and lethargic regeneration of the epithelium. The permeability of the epithelium for Riboflavin can be enhanced in several ways, for example, modifying physico-chemical properties of Riboflavin molecules or increasing the permeability of the epithelium, for example, by instillation of a 40 % strength solution of glucose. It was shown that the conducting electrophoresis with Riboflavin for 5 minutes, allows to reach a concentration in the cornea sufficient to conduct the crosslinking. There have also been attempts to reduce the time of the operation of crosslinking by increasing the power of irradiation of cornea with ultraviolet light. In single studies reported on the successful use of corneal crosslinking combined with photorefractive keratectomy and intracorneal the rings, as well as for the treatment of infectious keratitis and endothelial-epithelial dystrophy of the cornea.
About the Authors
I. B. MedvedevRussian Federation
MD, professor. Opthalmology department of Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russia
V. Ju. Evgrafov
Russian Federation
MD, opthalmology department of Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russiа
N. N. Dergacheva
Russian Federation
postgraduate opthalmology department of Pirogov Russian National Research Medical University, Ostrovitianov str. 1, Moscow, 117997, Russia
References
1. ASCRS Cornea Clinical Committee. Reshaping procedures for the surgical management of corneal ectasia. J Cataract Refract Surg. 2015;41:842‑72.
2. Gordon-Shaag A, Millodot M, Shneor E, Liu Y. The genetic and environmental factors for Keratoconus. Biomed Res Int. 2015;2015:795‑738.
3. Randleman JB, Woodward M, Lynn MJ, Stulting RD. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology. 2008;115:37‑50.
4. Vazirani J, Basu S. Keratoconus: current perspectives. Clin Ophthalmol. 2013;7:2019‑30.
5. Randleman JB, Khandelwal SS, Hafezi F. Corneal cross-linking. Surv Ophthalmol. 2015;60 (6):509‑23. doi:10.1016 / j.survophthal.2015.04.002.
6. Kamaev P, Friedman MD, Sherr E, Muller D. Photochemical kinetics of corneal crosslinking with riboflavin. Invest Ophthalmol Vis Sci. 2012;53:2360‑7.
7. Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE. Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg. 2006;32 (2):279‑83.
8. Wollensak G, Spoerl E, Seiler T. Stress — strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg. 2003;29 (9):1780‑5.
9. Wollensak G, Aurich H, Pham DT, Wirbelauer C. Hydration behavior of porcine cornea crosslinked with riboflavin and ultraviolet A. J Cataract Refract Surg. 2007;33 (3):516‑21.
10. Akhtar S, Almubrad T, Paladini I, Mencucci R. Keratoconus corneal architecture after riboflavin / ultraviolet A cross-linking: ultrastructural studies. Mol Vis. 2013;19:1526‑37.
11. Wollensak G, Wilsch M, Spoerl E, Seiler T. Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin / UVA. Cornea. 2004;23 (5):503‑7.
12. Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29 (1):35‑40.
13. Alhayek A, Lu PR. Corneal collagen crosslinking in keratoconus and other eye disease. Int J Ophthalmol. 2015;18 (8):407‑18.
14. Raiskup F, Spoerl E. Corneal crosslinking with riboflavin and ultraviolet A. Part II. Clinical indications and results. Ocul Surf. 2013;11:93‑108.
15. Vinciguerra P, Albe E, Trazza S, Rosetta P, Vinciguerra R, Seiler T, et al. Refractive, topographic, tomographic, and aberrometric analysis of keratoconic eyes undergoing corneal cross-linking. Ophthalmology. 2009;116:369‑78.
16. Wollensak G, Spoerl E, Seiler T. Riboflavin / ultraviolet — a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620‑7.
17. Lang SJ, Messmer EM, Geerling G, Mackert MJ, Brunner T, Dollak S, et al. Prospective, randomized, double-blind trial to investigate the efficacy and safety of corneal cross-linking to halt the progression of keratoconus. BMC Ophthalmol. 2015;15:78.
18. Poli M, Lefevre A, Auxenfans C, Burillon C. Corneal collagen cross-linking for the treatment of progressive Corneal Ectasia: 6‑year prospective outcome in a French population. Am J Ophthalmol. 2015;160 (4):654‑62.
19. Shalchi Z, Wang X, Nanavaty MA. Safety and efficacy of epithelium removal and transepithelial corneal collagen crosslinking for keratoconus. Eye (Lond). 2015;29:15‑29.
20. Mastropasqua L, Nubile M, Lanzini M, Calienno R, Mastropasqua R, Agnifili L, et al. Morphological modification of the cornea after standard and transepithelial corneal cross- linking as imaged by anterior segment optical coherence tomography and laser scanning in vivo confocal microscopy. Cornea. 2013;32:855‑61.
21. Abbouda A, Abicca I, Alio JL. Infectious keratitis following corneal crosslinking: a systematic review of reported cases: management, visual outcome, and treatment proposed. Semin Ophthalmol. 2014;13:1‑7.
22. Ferrari G, Iuliano L, Viganò M, Rama P. Impending corneal perforation after collagen cross-linking for herpetic keratitis. J Cataract Refract Surg. 2013;39: 638‑41.
23. Kymionis GD, Bouzoukis DI, Diakonis VF, Portaliou DM, Pallikaris AI, Yoo SH. Diffuse lamellar keratitis after corneal crosslinking in a patient with post-laser in situ keratomileusis corneal ectasia. J Cataract Refract Surg. 2007;33:2135‑7.
24. Sharma A, Nottage JM, Mirchia K, Sharma R, Mohan K, Nirankari VS. Persistent corneal edema after collagen cross-linking for keratoconus. Am J Ophthalmol. 2012;154:922‑6.
25. Baiocchi S, Mazzotta C, Cerretani D, Caporossi T, Caporossi A. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium. J Cataract Refract Surg. 2009;35:893‑9.
26. Mannermaa E, Vellonen KS, Urtti A. Drug transport in corneal epithelium and bloodretina barrier: emerging role of transporters in ocular pharmacokinetics. Adv Drug Deliv Rev. 2006;58:1136‑63.
27. Abdelghaffar W, Hantera M, Elsabagh H. Corneal collagen cross-linking: promises and problems. Br J Ophthalmol. 2010;94:1559‑60.
28. Ashwin PT, McDonnell PJ. Collagen cross-linkage: a comprehensive review and directions for future research. Br J Ophthalmol. 2010;94:965‑70.
29. Evgrafov VY, IB Medvedev, Medvedev NI, Bagrov SN, RS Kemov [A method of treating keratoconus cornea]. Patent for invention RU 2542799, 28.01.2015. (in Russ.).
30. MM Bikbov, GM Bikbova, VK Surkov, NB Zainullina [Clinical results of the treatment of keratoconus by corneal collagen transepithelial crosslinking]. Klinicheskie rezul’taty lechenija keratokonusa metodom transjepitelial’nogo krosslinkinga rogovichnogo kollagena. [Ophthalmology]. Oftal’mologija. 2016;13 (1):4‑9. (in Russ.).
31. Acar BT, Utine CA, Ozturk V, Acar S, Ciftci F. Can the effect of transepithelial corneal collagen cross-linking be improved by increasing the duration of topical riboflavin
32. application? An in vivo confocal microscopy study. Eye Contact Lens. 2014;40 (4):207‑12.
33. Lesniak SP, Hersh PS. Transepithelial corneal collagen crosslinking for keratoconus: six-month results. J Cataract Refract Surg. 2014;40:1971‑9.
34. B Medvedev, Medvedev NI, Bagrov SN [Treatment of keratoconus by cross-linking]. М., 2010. –110 p. (in Russ.).
35. Mastropasqua L, Lanzini M, Curcio C, Calienno R, Mastropasqua R, Colasante M, et al. Structural modifications and tissue response after standard epi-off and iontophoretic corneal crosslinking with different irradiation procedures. Invest Ophthalmol Vis Sci. 2014;55:2526‑33.
36. Shetty R, Pahuja NK, Nuijts RM, Ajani A, Jayadev C, Sharma C, et al. Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am J Ophthalmol. 2015;160:243‑9.
37. Alpins N, Stamatelatos G. Customized photoastigmatic refractive keratectomy using combined topographic and refractive data for myopia and astigmatism in eyes with forme fruste and mild keratoconus. J Cataract Refract Surg. 2007;33:591‑602.
38. Kılıç A, Kamburoglu G, Akıncı A. Riboflavin injection into the corneal channel for combined collagen crosslinking and intrastromal corneal ring segment implantation. J Cataract Refract Surg. 2012;38:878‑83.
39. Tabibian D, Richoz O, Hafezi F. PACK-CXL: Corneal Cross-linking for Treatment of Infectious Keratitis. J Ophthalmic Vis Res. 2015;10:77‑80.
40. Goodrich RP. The use of riboflavin for inactivation of pathogens in blood products. Vox Sang. 2000;78:211‑5.
41. Martins SA, Combs JC, Noguera G, Camacho W, Wittmann P, Walther R, et al. Antimicrobial efficacy of riboflavin / UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis. Invest Ophthalmol Vis Sci. 2008;49 (8):3402‑8.
42. Iseli HP, Thiel MA, Hafezi F, Kampmeier J, Seiler T. Ultraviolet A / riboflavin corneal cross-linking for infectious keratitis associated with corneal melts.Cornea. 2008;27:590‑4.
43. Alio JL, Abbouda A, Valle DD, Del Castillo JM, Fernandez JA. Corneal cross linking and infectious keratitis: a systematic review with a meta-analysis of reported cases. J Ophthalmic Inflamm Infect. 2013;3:47.
44. Said DG, Elalfy MS, Gatzioufas Z, El-Zakzouk ES, Hassan MA, Saif MY, et al. Collagen cross-linking with photoactivated riboflavin (PACK-CXL) for the treatment of advanced infectious keratitis with corneal melting. Ophthalmology. 2014;121:1377‑82.
45. Sorkin N, Varssano D. Corneal collagen crosslinking: a systematic review. Ophthalmologica. 2014;232:10‑27.
46. Ghanem RC, Santhiago MR, Berti TB, Thomaz S, Netto MV. Collagen crosslinking with riboflavin and ultraviolet-A in eyes with pseudophakic bullous keratopathy. J Cataract Refract Surg. 2010;36:273‑6.
47. Sharma N, Roy S, Maharana PK, Sehra SV, Sinha R, Tandon R, et al. Outcomes of corneal collagen crosslinking in pseudophakic bullous keratopathy. Cornea. 2014;33:243‑6.
Review
For citations:
Medvedev I.B., Evgrafov V.J., Dergacheva N.N. Crosslinking: methodological approaches and application in ophthalmology. Ophthalmology in Russia. 2016;13(2):56-61. (In Russ.) https://doi.org/10.18008/1816-5095-2016-2-56-61