Preview

Офтальмология

Расширенный поиск

Влияние длительной микрогравитации на орган зрения. Обзор литературы

https://doi.org/10.18008/1816-5095-2016-2-74-82

Полный текст:

Аннотация

Обзор посвящен современному состоянию проблемы, связанной с изменением органа зрения при длительном воздействии микрогравитации на околоземной орбите. Описаны состояния, включающие наличие гиперметропического сдвига рефракции, изменений внутриглазного давления, повышения внутричерепного давления, изменений в области хориоидеи и сетчатки, отека диска зрительного нерва. Повышение внутричерепного давления, по всей вероятности, является основной причиной нарушений со стороны органа зрения в условиях микрогравитации. Причиной повышения внутричерепного давления является совокупность влияния различных факторов адаптационных механизмов в организме к условиям невесомости. Ведущую роль в развитии внутричерепной гипертензии занимает перераспределение жидкостей организма (крови и лимфы) по направлению к голове, но возможно также одновременное влияние и других факторов или их потенцирующее действие. Рассмотрена роль таких триггерных механизмов в развитии внутричерепной гипертензии в условиях микрогравитации, как анатомические особенности организма, расовая принадлежность, метаболические изменения под действием повышенного содержания углекислого газа в различных отсеках станции, высокое потребление натрия, ферментные дисфункции, силовые физические упражнения. Тем не менее, патогенетические 
механизмы в настоящее время пока еще остаются в стадии изучения. Важная роль при анализе механизмов адаптации отводится исследованиям не только до- и после полета, но и во время космического полета. Накопленные знания и опыт по преодолению изменений в органах и системах организма в условиях адаптации человека к микрогравитации позволят ответить на многие вопросы, связанные с осуществлением длительных и сверхдлительных полетов в условиях невесомости.

Об авторах

И. А. Макаров
Федеральное государственное бюджетное научное учреждение Научный центр неврологии, Волоколамское шоссе, д. 80, Москва, 125367, Российская Федерация Федеральное бюджетное учреждение науки Государственный научный центр РФ — Институт медико-биологических проблем Российской академии наук, ул. Хорошевское шоссе, д. 76‑А, Москва, 123007, Российская Федерация
Россия

доктор медицинских наук, старший научный сотрудник ФГБНУ «Научный центр неврологии», Волоколамское шоссе, д. 80, Москва, 125367, Российская Федерация, 8‑905‑706‑71‑83



Ю. И. Воронков
Федеральное бюджетное учреждение науки Государственный научный центр РФ — Институт медико-биологических проблем Российской академии наук, ул. Хорошевское шоссе, д. 76‑А, Москва, 123007, Российская Федерация
Россия

доктор медицинских наук, профессор ФБУН ГНЦ РФ — Институт медико-биологических проблем РАН, ул. Хорошевское шоссе, д. 76‑А, Москва, 123007, Российская Федерация



Список литературы

1. Mader T. H., Gibson C. R., Pass A. F., Lee A. G., Killer H. E., Hansen H. C., Dervay J. P. Unilateral loss of spontaneous venous pulsation in an astronaut. J. Neuro- Ophthalmol. 2015;35:226‑227.

2. Mader T. H., Gibson C. R., Pass A. F., Killer H. E., Lee A. G. Optic disc edema in an astronaut after repeat long-duration space flight. J. Neuro-Ophthalmol. 2013;33 (9):249‑255.

3. Alexander D. J., Gibson C. R., Hamilton D. R., Lee S. M. C., Mader T. H., Otto C., Oubre C. M., Pass A. F., Platts S. H., Scott J. M., Smith C. M., Stenger M. B., Westby C. M., Zanello S. B., and space administration. Risk of spaceflight-induced intracranial hypertension and vision alterations (evidence report). NASA; 2012.

4. Nelson E. S., Mulugeta L., Myers J. S. Microgravity-induced fluid shift and ophthalmic changes (review). Life; 2014;4 (4):621‑665.

5. Wotring V. E. Space Pharmacology; 2012, N.‑Y.:Springer.

6. Myasnikov V. I., Stepanova S. I. [Features of cerebral hemodynamics in cosmonauts before and after flight on the MIR orbital station. In: Orbital Station MIR]. [Space Biology and Medicine]. Kosmicheskaja biologija i medicina Vol. 2, Biomedical Experiments. Moscow, Russia: Institute of Biomedical Problems of the Russian Academy of Sciences, 2002, Chapter 5:300‑304. (in Russ.).

7. Jennings R. T., Stepanek J. P., Scott L. R., Voronkov Y. I. Frequent premature ventricular contractions in an orbital spaceflight participant.Aviat Space Environ Med.; 2010;81 (6):597‑601.

8. Johnston S. L., Arenare B. A., Smart K. T. Telemedicine. In Barratt M. R, Pool S. L. (eds.). Principles of Clinical Medicine for Space Flight; 2008, N. Y.:Springer.163‑180.

9. Simmons S. C., Hamilton D. R., McDonald P. V. Medical imaging. In Barratt M. R, Pool S. L. (eds.) Principles of Clinical Medicine for Space Flight; 2008, N. Y.:Springer. 181‑211.

10. Bogomolov V. V., Kuz’min M. P., Danilichev S. N. [On the intracranial hypertension in astronauts during long-term microgravity]. K voprosu o vnutricherepnoj gipertenzii u astronavtov v uslovijah dlitel’noj nevesomosti. [Aerospace and Environmental Medicine]. Aviakosmicheskaya i Ekologicheskaya Medicina. 2015;49 (4):54‑58. (in Russ).

11. Zhang L. F., Hargens A. R. Intraocular / Intracranial pressure mismatch hypothesis for visual impairment syndrome in space. Aviat. Space Environ. Med.; 2014;85:597‑601.

12. Smith S. M., Rice B. L., Dlouhy Y., Zwart S. R. Assessment of nutritional intake during spaceflight and spaceflightanalogs. Procedia Food Science; 2013;2:27‑34.

13. Marshall-Bowman K., Barratt M. R., Gibson C. M. Ophthalmic changes and increased intracranial pressure associated with long duration spaceflight: An emerging understanding. ActaAstronautica; 2013;87 (4):77‑87.

14. Berdahl J. P., Fleischman D., Allingham R. R., Fautsch M. Disc swelling and space flight. Ophthalmology; 2012;119 (12):1290.

15. Kramer L. A., Sargsyan A. E., Hasan K. M., Polk J. D., Hamilton D. R. Orbital and intracranial effects of microgravity: findings at 3‑T MR Imaging. Radiology; 2012;263:1‑9.

16. Wiener T. C. Space obstructive syndrome: intracranial hypertension, intraocular pressure, and papilledema in Space. Aviatin, Space, and environmental medicine; 2012;83 (1):64‑66.

17. Clark J. B., Allen C. S. Ophthalmologic concerns. In Barratt M. R, Pool S. L. (eds.) Principles of Clinical Medicine for Space Flight; 2008, N. Y.:Springer. 535‑545.

18. Partington T., Farmery A. Intracranial pressure and cerebral blood flow (review article). Anaesthesia and Intensive Care Medicine; 2014;15 (4):189‑194.

19. Hamilton D. R. Neurologic Concerns. In Barratt M. R, Pool S. L. (eds.) Principles of Clinical Medicine for Space Flight; 2008, N. Y.:Springer.361‑381.

20. Acheson J. F. Idiopathic intracranial hypertension and visual function. Brit. Med. Bulletin, 2006;85‑86 (1):233‑244.

21. Berdahl J. P., Yu D. Y., Morgan W. M. The translaminar pressure gradient in sustained zero gravity, idiopathic intracranial hypertension, and glaucoma. Medicine Hypotheses; 2012;79 (5):719‑724.

22. Marek B., Harris A., Kanakamedala P., Lee E., Amireskandari A., Carichino L., Guidoboni G., Tobe L. A., Siesky B. Cerebrospinal fluid pressure and glaucoma: Regulation of trans-lamina cribrosa pressure. Br. J. Ophthalmol; 2014;98:721‑725.

23. Gilles C. Fundamentals of Space Medicine (2‑nd eds.). 2006, Amsterdam: Springer.

24. White R. J., Blomqvist C. G. Central venous pressure and cardiac function during spaceflight. J. Appl. Physiol.; 1998;85 (2):738‑746.

25. Sams C. F., Pierson D. L. Cardiovascular Disorders. In Barratt M. R, Pool S. L. (eds.) Principles of Clinical Medicine for Space Flight; 2008, N. Y.:Springer. 317‑361.

26. Hargens A. R., Richardson S. Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respiratory Physiology & Neurobiology; 2009;169 (10):S30‑S33.

27. Verbanck S., Larsson H., Linnarsson D., Prisk G. K., West J. B., Paiva M. Pulmonary tissue volume, cardiac output, and diffusing capacity in sustained microgravity. J. Appl. Physiol.; 1997;83 (3):810‑816.

28. Grigoriev A. I., Kotovskaya A. R., Fomina G. A. The human cardiovascular system during space flight. Acta Astronautica, 2011;68 (3):1495‑1500.

29. Ruwanpathirana T., Owen A., Reid C. M. Review on cardiovascular risk prediction. Cardiovascular Therapeutics; 2015;33 (2):62‑70.

30. Kim D. H., Parsa C. F. Space flight and disc edema. Ophthalmology; 2012;199:2420‑2421.

31. Baker E. S., Barratt M. R., Wear M. L..Human Response to Space Flight.In Principles of Clinical Medicine for Space Flight, by Michael R. Barratt and Sam L Pool, Chapter 2. New York, NY: Springer, 2008. P.27‑54.

32. Blaber A. P., Zuj, K. A., Goswami, N. Cerebrovascular autoregulation: Lessons learned from spaceflight research. Eur. J. Appl. Physiol.; 2013;113:1909‑1917.

33. Draeger J., Schwartz R., Groenhoff S., Stern C. Self-tonometry under microgravity conditions. Clinic.Investig.; 1993;71 (9):700‑703.

34. Keith F. M., MaderTh.H. Ophthalmic concerns. In: Barratt M. L., Pool S. M. (eds). Chapter 25. Principles of Clinical Medicine for Space Flight. 2008, NY:Springer, 534‑544.

35. Westfall A. C., Ng J. D., Samples J. R., Weissman J. L. In reply to Brodsky MC. Flattening of the posterior sclera: hypotony or elevated intracranial pressure? Am. J. Ophthalmol. 2004;138:511‑512.

36. Costa V. P, Arcieri E. S. Hypotony maculopathy. ActaOphthalmol. Scand. 2007;85:586‑597.

37. Keyes L. E., Paterson R., Boatright D., Browne V., Leadbetter G., Hackett P. Optic nerve sheath diameter and acute mountainsickness. Wilderness and environmental medicine; 2013;24 (2):105‑111.

38. Carod-Artal F. J. High-altitude headache and acute mountain sickness. Neurología (English Ed.); 2014;29 (9):533‑540.

39. Kostoglou K., Debert C. T., Poulin M. J., Mitsis G. D. Nonstationary multivariate modeling of cerebral autoregulation during hypercapnia. Medical Engineering & Physics; 2014;36 (5):592‑600.

40. James J. T. Hypoxia, hypercarbia, and atmospheric control. In Barratt M. R, Pool S. L. (eds.) Principles of Clinical Medicine for Space Flight; 2008, N. Y.:Springer. 445‑475.

41. Blaha M., Aaslid R., Douville C. M., Correra R., Newell D. W. Cerebral blood flow and dynamic cerebral autoregulation during ethanol intoxication and hypercapnia. Journ. of Clinical Neuroscience; 2003;10 (2):195‑198.

42. Carrera E., Lee L. K., Giannopoulos S., Marshall R. S. Cerebrovascular reactivity and cerebral autoregulation in normal subjects. Journ. Neurological Sciences; 2009;285 (1– 2):191‑194.

43. Wang D., Yee B. J., Wong K. K., Kim J. W., Dijk D. J. Comparing the effect of hypercapnia and hypoxia on the electroencephalogram during wakefulness. Clinical Neurophysiology; 2015;126 (1):103‑109.

44. Jones J. A., Pietrzyk R. A., Whitson P. A. Musculoskeletal Response to Space Flight. In Barratt M. R, Pool S. L. (eds.) Principles of Clinical Medicine for Space Flight; 2008, N. Y.:Springer. 293‑307.

45. Deng C., Wang P., Zhang X., Wang Y. Short-term, daily exposure to cold temperature may be an efficient way to prevent muscle atrophy and bone loss in a microgravity environment. Life Sci. Space Res. 2015;5:1‑5.

46. Kozlovskaja I. B., Pestov I. D., Egorov A. D. [The countermeasure system for extended space flights]. Kontrizmeritel’naja sistema dlja dlitel’nyh kosmicheskih poletov. [Aerospace and Environmental Medicine]. Aviakosmicheskaya I Ekologicheskaya Medicina. 2008;42 (6):66‑73. (in Russ).

47. Cavanagh P. R., Genc K. O., Gopalakrishnan R., Kuklis M. M., Maender C. C., Rice A. J. Foot forces during typical days on the International Space Station. Journ. Biomech.; 2010;43 (08):2182‑2188.

48. Genc K. O., Gopalakrishnan R., Kuklis M. M., Maender C. C., Rice A. J. Foot forces during exercise on the International Space Station. Journ. Biomech.; 2010;43 (11):3020‑3027.

49. Loehr J. A., Lee S. M., English K. L., Sibonga J., Smith S. M. Musculoskeletal adaptations to training with the advanced resistive exercise device. Med. Sci. Sports Exerc.; 2011;43 (1):146‑156.

50. Lin Y. L., Po H. L., Hsu H. Y., Chung C. P., Sheng S. P., Hu H. H. Transcranialdoppler studies on cerebralautoregulation suggest prolonged cerebral vasoconstriction in a subgroup of patients with orthostatic intolerance. Ultrasound in Medicine and Biology; 2011;37 (10):1554‑1560.

51. Talman W. T., Dragon D. N., Lin L. H. Baroreflex influences on cerebrovascular autoregulation. Autonomic Neuroscience; 2015;192 (11):28.

52. Powers W. J., Zazulia A. R. Cerebral metabolism and blood flow.Encyclopedia of the Neurological Sciences (2‑nd ed.); 2014, N-Y:Verlag, P.683‑684.

53. Mousavi S. R., Fehlner A., Streitberger K.‑J., Braun J., Samani A. Measurement of in vivo cerebral volumetric stain induced by the Valsalva maneuver. Journ. Biomech.; 2014;47 (7):1652‑1657.

54. Mills P. E., Hooper D. W., Chang P. L., Wolf R Effects of Valsalva’s manoeuvre on intraocular pressure. Can. J. Ophthalmol; 1994;79:2973‑2976.

55. Vieira G. M., Oliveira H. B., Tavares D., Bottaro M., Ritch R. Intraocular pressure variation during weight lifting. Arch. Opthalmol.; 2006;124 (10): 1251‑1254.

56. Gurwood A. S. Effects of weight lifting on intraocularpressure. Optometry; 2007;78 (2):51‑52.

57. Peters N., Holtmannspötter M., Büttner U. Valsalva-maneuver induced recurrent transient bilateral visual loss. Clin. Neurol. and Neurosurgery; 2011;113 (2):150‑152.

58. Falcão M., Vieira M., Brito P., Rocha-Sousa A., Brandão E. M. Spectral-domain optical coherence tomography of the choroid during Valsalva maneuver. Amer. J. Ophthalmol.; 2012;154 (4): 687‑692.

59. Stamler J. The Intersalt study: background, methods, findings, and implications. Am. J. Clinical Nutrition; 1997, 65 (supl.): 626S-642S.

60. Graudal N. Population data on blood pressure and dietary sodium and potassium do not support public health strategy to reduce salt intake in Canadians. Can. J. Cardiology; 2015, available online 20.

61. Hodapp M. H. Spaceflight metabolism and nutritional support. In Barratt M. R, Pool S. L. (eds.) Principles of Clinical Medicine for Space Flight; 2008, N. Y.:Springer. 559.

62. Siamwala J. H., Rajendran S., Chatterjee S. Chapter Eight — Strategies of manipulating BMP signaling in microgravity to prevent boneloss. Vitamins and Hormones; 2015;99:249‑272.

63. Stolarz-Skrzypek K., Staessen J. S. Reducing salt intake for prevention of cardiovascular disease — times are changing. Advances in Chronic Kidney Disease; 2015;22 (2):108‑115.

64. Delahaye F. Should we eat less salt? Review Article. Archives of Cardiovascular Diseases; 2013;106 (5):324‑332.

65. Zwart S. R., Gibson C. R., Mader T. H., Ericson K., Ploutz-Snyder R., Heer M., Smith S. M. Vision changes after space flight are related to alterations in folate- and Vitamin B-12‑dependent one-carbon metabolism. Journ. Nutr. 2012;142:427‑431.

66. Ajith T. A. Homocysteine in ocular diseases (review). Clin.Chim.Acta; 2015;4:416‑417.

67. Andgelova D. V. Current approaches to hemophthalmia treatment. Review. Ophthalmology. 2012;9 (2):8‑10. (In Russ.)

68. Trufanov S. V., Malozhen S. A., Polunina E. G., Pivin E. A., Tekeeva L. Y. Recurrent corneal erosion syndrome (a review). Ophthalmology. 2015;12 (2):4‑12. (In Russ.)


Для цитирования:


Макаров И.А., Воронков Ю.И. Влияние длительной микрогравитации на орган зрения. Обзор литературы. Офтальмология. 2016;13(2):74-82. https://doi.org/10.18008/1816-5095-2016-2-74-82

For citation:


Makarov I.A., Voronkov Y.I. Changes of the eye during long-term spaceflight. Review. Ophthalmology in Russia. 2016;13(2):74-82. (In Russ.) https://doi.org/10.18008/1816-5095-2016-2-74-82

Просмотров: 348


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)