NONINVASIVE METHODS ASSESSMENT BLOOD FLOW IN ANTERIOR SEGMENT AND CLINICAL APPLICATION PERSPECTIVE
https://doi.org/10.18008/1816-5095-2017-4-283-290
Abstract
The literature review contains information on the anatomical and physiological features of the vessels of the conjunctiva, iris, ciliary body. There are data on the development and application of new non-invasive methods for the study of hemodynamics in the microvessels of anterior eye segment. To study the blood flow of the anterior segment of the eye, biomycroscopy, photography and videobiomicroscopy, television biomicroscopy of vessels, darkfield visualization, application fluorescence angiography, photoacoustic angiography, orthogonal polarization spectroscopy, laser Doppler flowmetry and OCT-angiography were used in recent years. These methods allow to determine the qualitative and quantitative characteristics of conjunctiva, iris, ciliary body microcirculation. They are highly informative for assess of various drugs effect on the vascular eye system. Investigation of hemodynamics in the eye microvessels is necessary for a fundamental approach to the study of the pathophysiology of systemic circulatory pathologies (with arterial hypertension, diabetes, etc.) and changes in regional blood flow in organ of vision disease. Monitoring of anterior segment microcirculation in clinical practice makes possible to monitor the effectiveness of drug and surgical treatment.
Keywords
About the Authors
T. N. KiselevaRussian Federation
Kiseleva Tatiana Nikolaevna - MD, Professor, Head of Ultrasound Diagnostic Department.
Sadovaya-Chernogryazskaya 14/19, Moscow, 105062
V. I. Kotelin
Russian Federation
Kotelin Vladislav Igorevich - ophthalmologist, resident.
Sadovaya-Chernogryazskaya 14/19, Moscow, 105062
O. A. Losanova
Russian Federation
Losanova Oksana Arsenovna - ophthalmologist, resident.
Sadovaya-Chernogryazskaya 14/19, Moscow, 105062
K. V. Lugovkina
Russian Federation
Lugovkina Kseniya Vadimovna - PhD, Research Officer of Ultrasound Diagnostic Department.
Sadovaya-Chernogryazskaya 14/19, Moscow, 105062
References
1. Александров П.Н., Еникеев Д.А. Методы исследования микроциркуляции. Уфа: Диалог; 2004. [Aleksandrov, P. N., Enikeev, D. A. Methods of microcirculation research. Ufa, Dialog, 2004 (in Russ)].
2. Schmetterer L. Ocular blood flow. New York, Springer; 2012.
3. Freddo T. F., Raviola G. The gomogenous structure of blood vessels in the vascular tree of Macaca mulatta iris. Invest Ophthalmol Vis Sci. 1982;22:279-291.
4. Anthony J. Bron, Ramesh C. Tripathi, Brenda J. Tripathi. Wolff ’s anatomy of the eye and orbit. 8th ed. London: Chapman & Hall Medical. 1997.
5. Петров С.Ю. Анатомия глаза и его придаточного аппарата. М.:ГЭОТАРМедиа; 2003. [Petrov S.Y. Anatomy of the eye and its adnexa. M:GEOTAR, Media; 2003.(in Russ.)].
6. Eriksson S., Nilsson J. & Sturesson C. Non-invasive imaging of microcirculation: a technology review. Medical devices (Auckland, NZ). 2014;7:445–452. doi: 10.2147/MDER.S51426
7. Бунин, А. Я., Кацнельсон, Л. А., Яковлев, А. А. Микроциркуляция глаза. М.:Медицина; 1984. [Bunin A. J., Katsnelson L.A., Jakovlev A. A. Microcirculation of the eye. Moscow, Medicina, 1984. (in Russ.)].
8. Xu Z., Jiang H., Tao A., Wu S., Yan W., Yuan J., Liu C., DeBuc D.C., Wang, J. Measurement variability of the bulbar conjunctival microvasculature in healthy subjects using functional slit lamp biomicroscopy (FSLB). Microvascular research. 2015;101:15-19. doi: 10.1016/j.mvr.2015.05.003
9. Houben, A. J., Burgwinkel, J. P., & de Leeuw, P. W. A novel approach to the study of human microcirculation: reactivity to locally applied angiotensin II in the conjunctival microvascular bed. Journal of hypertension. 2006;24(11):2225-2230. doi: 10.1097/01.hjh.0000249700.11736.9e
10. Sumi T., Yoneda T., Fukuda K., Hoshikawa, Y., Kobayashi, M., Yanagi, M., Fukushima, A. Development of automated conjunctival hyperemia analysis software. Cornea. 2013;32:52-59. doi: 10.1097/ICO.0b013e3182a18e44
11. Shahidi M., Wanek J., Gaynes B., Wu T. Quantitative assessment of conjunctival microvascular circulation of the human eye. Microvascular research. 2010;79(2):109113. doi: 10.1016/j.mvr.2009.12.003
12. Felder, A. E., Mercurio, C., Wanek, J., Ansari, R., Shahidi, M. Automated Real-Time Conjunctival Microvasculature Image Stabilization. IEEE transactions on medical imaging 2016;35(7):1670-1675. doi: 10.1109/TMI.2016.2522918
13. Arora N., Islam S., Wafa K., Zhou J., Toguri J. T., Cerny V., Lehmann C. Evaluation of iris functional capillary density in experimental local and systemic inflammation. Journal of microscopy. 2017;266(1):55-59. doi: 10.1111/jmi.12518
14. Xie F., Sun D., Schering A., Nakao S., Zandi S., Liu P., Hafezi-Moghadam A. Novel molecular imaging approach for subclinical detection of iritis and evaluation of therapeutic success. The American journal of pathology. 2010;177(1):39-48. doi: 10.2353/ajpath.2010.100007
15. Cerny V., Zhou J., Kelly M., Alotibi I., Turek Z., Whynot S., Saleh I.A., Lehmann C. Noninvasive assessment of the iridial microcirculation in rats using sidestream dark field imaging. Journal of microscopy. 2013;249(2):119-123. doi: 10.1111/jmi.12000
16. Pranskūnas A., Pilvinis V., Dambrauskas Ž., Rasimavičiūtė R., Milieškaitė E., Bubulis A., Veikutis V., Vaitkaitis D., Boerma E. C. Microvascular distribution in the ocular conjunctiva and digestive tract in an experimental setting. Medicina (Kaunas Kaunas). 2012;48(8):417-23.
17. Петраевский А.В., Гндоян И.А. Аппликационная флюоресцентная ангиография: новый способ исследования гемомикроциркуляции переднего сегмента глаза. Вестник офтальмологии. 2014;130(2):12-19. [Petraevskii A.V., Gndoyan I.A. Applied fluorescent angiography: a new method for the study of hemocirculation of the anterior segment of the eye. Annals of Ophthalmology=Vestnik oftal’mologii 2014;130(2): 12-19. (in Russ.)].
18. Hu S., Rao B., Maslov K., Wang L. V. Label-free photoacoustic ophthalmic angiography. Optics letters. 2010;35(1):1-3. doi: 10.1364/OL.35.000001
19. Van Zijderveld R., Ince C., Schlingemann R. O. Orthogonal polarization spectral imaging of conjunctival microcirculation. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2014;252(5):773-779. doi: 10.1007/s00417-014-2603-9
20. Абрамович С.Г., Машанская А.В. Лазерная доплеровская флоуметрия в оценке микроциркуляции у здоровых людей и больных артериальной гипертонией. Сибирский научный медицинский журнал. 2010;92(1):57-59. [Abramovich S.G., Mashanskaya A.V. Laser Doppler flowmetry in the evaluation of microcirculation in healthy people and patients with arterial hypertension. Siberian scientific medical journal=Sibirskiy nauchnyy meditsinskiy zhurnal. 2010;92(1):5759. (in Russ.)].
21. Ohtani N. Laser Doppler flowmetry of the bulbar conjunctiva as a monitor of the cerebral blood flow. Zasshi Journal, Nihon Kyobu Geka Gakkai. 1996;44(9):1721-1728.
22. Kim S.A., Jun S.B. In-vivo Optical Measurement of Neural Activity in the Brain. ExpNeurobiol. 2013;22(3):158-166. doi: 10.5607/en.2013.22.3.158
23. Sutherland B.A., Rabie T., Buchan A.M. Laser Doppler flowmetry to measure changes in cerebral blood flow. Methods Mol. Biol. 2014;1135:237-248. doi:10.1007/978-1-4939-0320-7_20.
24. Филатова И.А., Романова И.А. Возможность прогнозирования риска отторжения свободного полнослойного кожного аутотрансплантата при реконструкции век. Российский офтальмологический журнал. 2011;4(4):7175. [Filatova I.А., Romanova I.А. Free full-thickness skin autograft in eyelid reconstruction: possibilities of rejection risk prediction. Russian ophthalmology journal=Rossijskij oftal’mologicheskij zhurnal. 2011;4(4):71-75 (in Russ.)].
25. Сафонова Т.Н., Луцевич Е.Э., Кинтюхина Н.П. Изменение микроциркуляции бульбарной конъюнктивы при различных заболеваниях. Вестник офтальмологии. 2016;132(2):90-95. Safonova T.N., Lutsevich E.E., Kintukhina N.P. [Microcirculatory changes in bulbar conjunctiva in various diseases. Annals of Ophthalmology=Vestnik oftal’mologii 2016;132(2):90-95. doi: 10.17116/oftalma2016132290-95 (in Russ.)].
26. Jiang H., Ye Y., DeBuc D. C., Lam B. L., Rundek T., Tao A., Shao Y., Wang J. Human conjunctival microvasculature assessed with a retinal function imager (RFI). Microvascular research. 2013;85:134-137. doi: 10.1016/j.mvr.2012.10.003
27. Stuebiger N., Smiddy W., Wang J., Jiang H., DeBuc D. C. Assessment of conjunctival microangiopathy in a patient with diabetes mellitus using the retinal function imager. Journal of clinical & experimental ophthalmology. 2015;6(1):400. doi: 10.4172/2155-9570.1000400
28. Khansari M. M., Wanek J., Felder A. E., Camardo N., Shahidi M. Automated assessment of hemodynamics in the conjunctival microvasculature network. IEEE transactions on medical imaging. 2016;35(2):605-611. doi: 10.1109/TMI.2015.2486619
29. Ang M., Sim D. A., Keane P. A., Sng C. C., Egan C. A., Tufail A., Wilkins M. R. Optical coherence tomography angiography for anterior segment vasculature imaging. Ophthalmology. 2015;122(9):1740-1747. doi: 10.1016/j.ophtha.2015.05.017
30. Li P., An L., Reif R., Shen T. T., Johnstone M., Wang R. K. In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography. Biomedical optics express. 2011;2(11):3109-3118. doi: 10.1364/BOE.2.003109
31. Choi W. J., Zhi Z., & Wang R. K. In vivo OCT microangiography of rodent iris. Optics letters. 2014;39(8):2455-2458.
Review
For citations:
Kiseleva T.N., Kotelin V.I., Losanova O.A., Lugovkina K.V. NONINVASIVE METHODS ASSESSMENT BLOOD FLOW IN ANTERIOR SEGMENT AND CLINICAL APPLICATION PERSPECTIVE. Ophthalmology in Russia. 2017;14(4):283-290. (In Russ.) https://doi.org/10.18008/1816-5095-2017-4-283-290