MICROPERIMETRY AND MORPHOMETRIC PARAMETERS OF OPTIC NERVE HEAD AND MACULAR AREA IN PATIENTS WITH PRIMARY OPEN ANGLE GLAUCOMA
https://doi.org/10.18008/1816-5095-2017-4-341-346
Abstract
Purpose: To study by using microperimetry a degree of functional disorders of retinal peripapillary area in patients with initial stage of primary open angle glaucoma (POAG), to analyze correlation relationship of the microperimetry parameters and the main morphometric parameters of the optic nerve head (OND).
Patients and methods. There were 51 patients (98 eyes) in the study aged from 50 to 72 years (average age 58,37 ± 9,41 years) with the initial stage of POAG. The control group consisted of 50 somatically healthy persons (99 eyes) without ophthalmological pathology. In addition to the standard ophthalmologic examination, the special methods included: optical coherence tomography (OCT) of the posterior segment of the eye (Optovue Avanti RTVue XR, USA) and microperimetry (Macular Integrity Assessment (MAIA), USA). Statistical analysis of the received data were processed with the IBM SPSS Statistics v.21 program (standard methods of descriptive statistics).
Results. Microperimetry has shown a significant statistical difference of MI parameters (29,68 ± 23,18) and AvTh (27,63 ± 3,38 dB) in patients with initial stage of POAG from those in the control group (p <0,01). The highest correlation of morphometric parameters and microperimetry parameters was defined in MI patients with POAG with the focal loss of volume (FLV) of ganglion cells complex (GCC) (ρ = 0,642, p <0,001). A significant positive relationship of moderate strength was found between microperimetry parameter MI in patients with POAG and the FVL GCC (ρ = 0,346, p <0,01), a moderate negative relationship with the index of MI was obtained with an average GCC thickness (ρ = -0,378, p <0 , 01), and an average RNFL thickness (ρ = -0,355, p <0,01). In patients with POAG a significant moderate positive relationship of AvThr parameter was identified with BCVA (ρ = 0,324, p <0,01), a moderate negative relationship of AvThr parameter with age (ρ = -0,401, p <0,01).
Conclusion. Application of microperimetry confirms involvement of the macular area in the pathological process in POAG. In the early stages of glaucoma neuroretinopathy is manifested both as regarding microperimetry functional data and OCT morphometric parameters.About the Authors
B. M. AznabaevRussian Federation
Aznabaev Bulat M. - MD, professor.
Lenin Street, 3, Ufa, 450000
A. Sh. Zagidullina
Russian Federation
Zagidullina Ajgul’ Sh. - Ph.D., associate professor.
Lenin Street, 3, Ufa, 450000
A. A. Alexandrov
Russian Federation
Aleksandrov Arkadij A. - Ph.D. assistant professor.
50 let SSSR Street, 8, Ufa, 450059
References
1. Глаукома. Национальное руководство под ред. Е.А. Егорова. — М.: ГЭО‑ТАР-Медиа 2013; 824с. [Egorov E.A. Glaucoma. National guidelines. Moscow, GEOTAR-Media Publ., 2013. 824 p. (in Russ.)].
2. Airaksinen P.J., Drance S.M., Douglas G.R., et al. Diffuse and localized nerve fi ber loss in glaucoma. Am. J Ophthalmol. 1984;98:566-571.
3. Sommer A., Katz J., Quigley H.A., et al. Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss. Arch Ophthalmol. 1991;109:77-83.
4. Курышева Н.И. Глаукомная оптическая нейропатия. М.: Медпресс, 2006;136 с. [Kurysheva N.I. Glaucomatous optic neuropathy. Moscow, Medpress, 2006; 136. (in Russ.)].
5. Anctil J.L., Anderson D.R. Early foveal involvement and generalized depression of the visual field in glaucoma. Arch Ophthalmol. 1984;102:363–370. PMID:6703983.
6. Fujita K., Yasuda N., Oda K., Yuzawa M. Reading performance in patients with central visual field disturbance due to glaucoma. Nippon Ganka Gakkai Zasshi. 2006;110:914–918. PMID:17134038.
7. Maddess T. Modeling the relative influence of fixation and sampling errors on retest variability in perimetry. Graefes Arch Clin Exp Ophthalmol. 2014;252:1611–1619. doi: 10.1007/s00417-014-2751-y PMID: 25074042.
8. Anderson R.S. The psychophysics of glaucoma: Improving the structure/function relationship. Prog Retin Eye Res. 2006;25:79–97. PMID: 16081311.
9. Павлова А.Ю., Горбунова Н.Ю., Шленская О.В., Зотова Ю.В. Микропериметрия в ранней диагностике глаукомы. Вестник Оренбургского государственного университета. 2011;14(133):285-287. [Pavlova A.Yu., Gorbunova N.Yu., Shlenskaya O.V., Zotova Yu.V. Microperimetry in the early diagnosis of glaucoma. Mikroperimetriya v ranney diagnostike glaukomy. Annals of Orenburg State University=Vestnik Orenburgskogo gosudarstvennogo universiteta. 2011;14(133):285-287. (in Russ.)].
10. Горбунова Н.Ю., Павлова А.Ю., Шленская О. В., Зотова Ю.В., Скворцов В.В. Возможности микропериметрии в диагностике глаукомы. Практическая медицина. Офтальмология. 2012; 1:186-190. [Gorbunova N.Yu., Pavlova A.Yu., Shlenskaya O. V., Zotova Yu.V., Skvortsov V.V. Features Microperimetry in the diagnosis of glaucoma. Practical Medicine. Ophthalmology=Prakticheskaya meditsina. Oftal’mologiya. 2012;1(4):186-190. (in Russ.)].
11. Лисочкина А.Б., Нечипоренко П.А. Микропериметрия — преимущества метода и возможности практического применения. Офтальмологические ведомости. 2009;1(2):18-22. [Lisochkina A.B., Nechiporenko P.A. Microperimetry — advantages of the method and practical application. Ophthalmology journal=Oftal’mologicheskie vedomosti. 2009;1(2):18-22. (in Russ.)].
12. Шишкин М.М., Евсютина Н.Н., Ружникова О.В. Микропериметрия — один из возможных методов ранней диагностики глаукомной оптической нейропатии. Офтальмология. 2007;4:13-17. [Shishkin M.M., Evsyutina N.N., Ruzhnikova O.V. Microperimetry — one of the possible methods of early diagnosis of glaucomatous optic neuropathy. Ophthalmology=Oftal’mologiya. 2007;4:13-17. (in Russ.) ].
13. Kameda T., Tanabe T., Hangai M. et al. Fixation behavior in advanced stage glaucoma assessed by the MicroPerimeter MP-1. Jpn. J Ophthalmol. 2009;53(6):5807. doi:10.1007/s10384-009-0735-y.
14. Lima V.C., Prata T.S., De Moraes C.G. et al. A comparison between microperimetry and standard achromatic perimetry of the central visual field in eyes with glaucomatous paracentral visual-field defects. Br J Ophthalmol. 2010;94(1):64-7. doi: 10.1136/bjo.2009.159772
15. Okada K., Watanabe W., Koike I. Alternative method of evaluating visual field deterioration in very advanced glaucomatous eye by microperimetry. Jpn J Ophthalmol. 2003;47(2):178-81.
16. Bagga H., Greenfi eld D.S., Knighton R.W. Macular symmetry testing for glaucoma detection. Glaucoma. 2005;14:358-363.
17. Lederer D.E., Schuman J.S., Hertzmark E. Analysis of macular volume in normal and glaucomatous eyes using optical coherence tomography. Am J Ophthalmol. 2003;135:838-843.
18. Sato S., Hirooka K., Baba T., Tenkumo K., Nitta E., Shiraga F. Correlation between the ganglion cell-inner plexiform layer thickness measured with cirrus HDOCT and macular visual field sensitivity measured with microperimetry. Invest Ophthalmol Vis Sci. 2013;54(4):3046-51. doi: 10.1167/iovs.12-11173.
19. Hirooka K., Misaki K., Nitta E., Ukegawa K., Sato S., Tsujikawa A. Comparison of Macular Integrity Assessment (MAIA ™), MP-3, and the Humphrey Field Analyzer in the Evaluation of the Relationship between the Structure and Function of the Macula. PLoS ONE 2016;11(3): e0151000. doi:10.1371/journal.pone.0151000.
20. Seong M., Sung K.R., Choi E.H. Macular and peripapillary retinal nerve fi ber layer measurements by spectral domain coherence tomography in normaltension glaucoma. Invest Ophthalmol Vis Sci. 2010;3(51):1446-1452. doi:10.1167/iovs.09-4258
21. Kim N.R., Lee E.S., Seong G.J. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646-4651. doi:10.1167/iovs.09-5053
22. Fang Y., Pan Y.Z., Li M., Qiao RH, Cai Y. Diagnostic capability of Fourier Domain optical coherence tomography in early primary open angle glaucoma. Chin Med J. 2010;15(123):2045-2050.
23. Özturk F., Yavas G.F., Kusbeci T., Ermis S.S. A comparision among Humphrey field analyzer, Microperimetry, and Heidelberg Retina Tomograph in the evaluation of macula in primary open angle glaucoma. J Glaucoma. 2008;17:118–121. doi: 10.1097/IJG.0b013e31814b97fd PMID: 18344757.
24. Mori S., Hangai M., Nakanishi H. Macular inner and total retinal volume measurement by spectral domain optical coherence tomography for glaucoma diagnosis. Kyoto university. 2008.
25. Акопян В.С., Семенова Н.С., Филоненко И.В., Цысарь М.А. Оценка комплекса ганглиозных клеток сетчатки при первичной открытоугольной глаукоме. Офтальмология. 2011;1(8):20-26. [Akopyan V.S., Semenova N.S., Filonenko I.V., Tsysar’ M.A. Evaluation of complex retinal ganglion cells in primary open angle glaucoma. Ophthalmology=Oftal’mologiya. 2011;1(8):20-26. (in Russ.)].
26. Страхов В.В., Алексеев В.В., Ермакова А.В. Информативность биоретинометрических показателей диска зрительного нерва и сетчатки в ранней диагностике первичной глаукомы. Глаукома. 2009;3:3-10. [Strakhov V.V., Alekseev V.V., Ermakova A.V. Informative bioretinometricheskih parameters of the optic nerve and retina in the early diagnosis of primary glaucoma. J Glaucoma=Glaucoma. 2009;3:3-10. (in Russ.) ].
Review
For citations:
Aznabaev B.M., Zagidullina A.Sh., Alexandrov A.A. MICROPERIMETRY AND MORPHOMETRIC PARAMETERS OF OPTIC NERVE HEAD AND MACULAR AREA IN PATIENTS WITH PRIMARY OPEN ANGLE GLAUCOMA. Ophthalmology in Russia. 2017;14(4):341-346. (In Russ.) https://doi.org/10.18008/1816-5095-2017-4-341-346