Morphofunctional Studies in the Early Diagnosis of Primary Open-Angle Glaucoma
https://doi.org/10.18008/1816-5095-2018-3-280-286
Abstract
Purpose: to study the relationship between the optic nerve structural changes and the electrophysiological parameters of visual analyzer in the early diagnosis of primary open-angle glaucoma (POAG). Patients and methods. 68 people took part in the study. 48 patients (56 eyes) were diagnosed with ophthalmic hypertension, suspected glaucoma (age ranged from 35 to 67 years, the average age was 51 years) and 20 healthy subjects (40 eyes) who entered the control group (age 32 up to 63 years, the average age is 47 years). All patients underwent standard ophthalmologic examination, multifocal electroretinography (mEPHRG), confocal scanning laser ophthalmoscopy (KSLO), electrophosphhenes and CFCs. For all types of analysis of mEPHR indices (by rings, quadrants and 3D), normal topography and density of the biopotential of the central region of the retina were recorded in patients with suspected glaucoma. The indices of the electrosensitivity of the inner layers of the retina, the conductivity of the axial fasciculus of the optic nerve, and CFSC also corresponded to normal values. Analysis of CCEA results showed a significant decrease of NRF volume of and the thickness of the retinal layer of nerve fibers compared to the control group, while in the group of patients with suspected glaucoma in 71 % of cases, the decrease of indicators correlated with the abnormalities in the static perimetry that was carried out earlier. Conducted morphometric studies confirm the fact that the decrease in the volume of IUU and SNV begins at the early, preclinical stage of glaucoma, and this in patients with ophthalmic hypertension can provide valuable information on the early diagnosis of POAG.
About the Authors
E. E. KazaryanRussian Federation
Kazaryan Elina E. MD, Senior Research Officer
Rossolimo str., 11A, B, Moscow, 119021
I. A. Ronzina
Russian Federation
Ronzina Irina A. PhD, Research Officer
Rossolimo str., 11A, B, Moscow, 119021
V. M. Sheludchenko
Russian Federation
Sheludchenko Vyacheslav M. MD, professor
Rossolimo str., 11A, B, Moscow, 119021
T. V. Smirnova
Russian Federation
Smirnova Тatiana V. PhD, Research Officer
Rossolimo str., 11A, B, Moscow, 119021
D. M. Safonova
Russian Federation
Safonova Daria M. PhD, Research Officer
Rossolimo str., 11A, B, Moscow, 119021
M. V. Khasyanova
Russian Federation
Khasyanova Maiya V. PhD, Research Officer
Rossolimo str., 11A, B, Moscow, 119021
References
1. Шамшинова А.М., Волков В.В. Функциональные методы исследования в офтальмологии. М., 2004. С. 428. [Shamshinova A.M., Volkov V.V. Functional methods of research in ophthalmology. М., 2004. P. 428 (In Russ.)]
2. Волков В.В. Глаукома при псевдонормальном давлении. Руководство для врачей. М. 2001. С. 352. [Volkov V.V. Glaucoma under pseudonormal pressure. A guide for doctors. M., 2001. P. 352 (In Russ.)]
3. Куроедов А.В., Голубев С.Ю., Шафранов Г.В. Исследование морфометрических критериев диска зрительного нерва в свете возможностей современной лазерной диагностической техники. Глаукома. 2005;2:7–18. [Kuroyedov A.V., Golubev S.Yu., Shafranov G.V. Investigation of morphometric criteria of the optic disc in the light of the possibilities of modern laser diagnostic equipment. Glaucoma = Glaucomе. 2005;2:7–18 (In Russ.)]
4. Казарян А.А. Паттерн-электроретинограмма и глаукома. Глаукома. 2005;3:62– 65. [Kazaryan A.A. Pattern-electroretinogram and glaucoma. Glaucoma = Glaucomе. 2005;3:62–65 (In Russ.)]
5. Курышева Н.И. Глаукомная оптическая нейропатия. М.: МЕДпресс-информ, 2006. С. 67–76. [Kurysheva N.I. Glaucoma optic neuropathy. M.: MEDpressinform, 2006. P. 67–76 (In Russ.)]
6. Шамшинова А.М., Волков В.В. Функциональные методы исследования в офтальмологии. М., 1999. 416 с. [Shamshinova A.M., Volkov V.V. Functional methods of research in ophthalmology. M., 1999. 416 p. (In Russ.)]
7. Шамшинова А.М., Казарян А.А., Куроедов А.В. Электроретинограмма при глаукоме. Глаукома. 2006;2:3–8. [Shamshinova A.M., Kazaryan A.A., Kuroyedov A.V. Electroretinogram for glaucoma. Glaucoma = Glaukoma. 2006;2:3–8 (In Russ.)]
8. Sutter E.E., Tran D. The field topography of ERG components in man1. The photopic luminanse. Response.Vis Res. 1992;32(3):433–446.
9. Bach M.I., Poloschek C.M. Electrophysiology and glaucoma: current status and future challenges. Cell Tissue Res. 2013 Aug; 353(2):287–96. DOI: 10.1007/s00441013-1598-6 Epub 2013 Mar 24.
10. Brandão L.M., Monhart M., Schötzau A., Ledolter A.A., Palmowski-Wolfe A.M. Applying a New Automated Perimetry Pattern Based on the Stimulus Distribution of the Multifocal ERG to Improve Structure-Function Investigation in Glaucoma. Journal of Ophthalmology. 2017, Article ID 8780934, 11 pages. DOI: 10.1155/2017/8780934
11. Грачева О. В. Клинические и экспериментальные исследования в офтальмологии. М., 2006. С. 22–24. [Gracheva О.V. Clinical and experimental studies in ophthalmology. M., 2006. P. 22–24 (In Russ.)]
12. Asrani А., Challa P., Herndon L., et al. Correlation among retinal thickness, optic disc, and visual field in glaucoma patients and suspects: a pilot study. J Glaucoma. 2003;12(2):119–128.
13. Choi J., Cho H.S., Lee C.H. Scanning laser polarimetry with variable corneal compensation in the area of apparently normal hemifield in eyes with normaltension glaucoma. Ophthalmol. 2006;(113):11:1954–1960.
14. Казарян А.А. Паттерн-электроретинограмма при глаукоме. Глаукома. 2005;2:3–6. [Kazaryan A.A. Pattern-electroretinogram for glaucoma. Glaucoma. 2005;2:3–6 (In Russ.)]
15. Ledolter A.A., Palmowski-Wolfe A.M. Wavelet decomposition analysis in the twoflash multifocal ERG in early glaucoma: a comparison to ganglion cell analysis and visual field. Doc Ophthalmol. 2017 Aug;135(1):29–42. DOI: 10.1007/s10633-017-9593-y
16. Kaneko M., Machida S., Hoshi Y., Kurosaka D. Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr Eye Res. 2015 Jan;40(1):77–86. DOI: 10.3109/02713683.2014.915575. Epub 2014 May 15.
17. Wilsey L., Gowrisankaran S., Cull G., Hardin C., Burgoyne C.F., Fortune B. Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure. Doc Ophthalmol. 2017 Apr;134(2):111–128. DOI: 10.1007/s10633-017-9578-x Epub 2017 Feb 27.
18. Волков В.В. «Золотые стандарты» для постановки диагноза глаукомы. Сб. Федоровские чтения. Х Всероссийская научно-практическая конференция с международным участием. 2012, с.176. [Volkov V.V. "Golden standards" for the diagnosis of glaucoma. Fedorov's readings. Х All-Russian scientific-practical conference with international participation. 2012, p.176. (In Russ.)],
19. Куроедов А.В., Голубев С.Ю., Шафранов Г.В. Исследование морфометрических критериев диска зрительного нерва в свете возможностей современной лазерной диагностической техники. Глаукома. 2005;4(2):7-18. [Kuroyedov AV, Golubev S.Yu., Shafranov G.V. Investigation of morphometric criteria of the optic disc in the light of the possibilities of modern laser diagnostic equipment. Glaucoma. 2005; 4 (2): 7-18. (In Russ.)]
20. Волков В.В. Глаукома открытоугольная. Медицинское информационное агенство. М., 2008. С. 21. [Volkov V.V. Glaucoma is open-angle. Medical information agency. Moscow. P. 21 (In Russ.)]
Review
For citations:
Kazaryan E.E., Ronzina I.A., Sheludchenko V.M., Smirnova T.V., Safonova D.M., Khasyanova M.V. Morphofunctional Studies in the Early Diagnosis of Primary Open-Angle Glaucoma. Ophthalmology in Russia. 2018;15(3):280-286. (In Russ.) https://doi.org/10.18008/1816-5095-2018-3-280-286