Preview

Ophthalmology in Russia

Advanced search

The Morphological Description Automation of the Optic Nerve Head Boundary in Digital Fundus Images

https://doi.org/10.18008/1816-5095-2018-3-325-329

Abstract

Purpose. To develop the automating method for the description of the optic nerve head condition. The method allows to differentiate the optic nerve head with clear boundaries typical for the normal fundus and optic nerve head with blurred boundaries typical for different types of ophthalmopathology. Methods. The proposed method is based on integration algorithm of luminance samples along the diagonal. It shows that optic nerve head images with blurred boundaries are characterized by a more linear increase in brightness in the frontal region compared to the accumulation result for the case of normal optic nerve head. To identify this feature the firstorder derivative can be used. To reduce the effect of blood vessels on the result of processing luminance samples along the diagonal is performed in the red channel since the blood vessels effect on the optic nerve head border is minimized in the red color component. Results. The application of this method to images of optic nerve head with diffuse boundaries shows that the accumulation result is characterized by a slower brightness variation. Тhe analysis of 20 fundus images revealed that the value of the first-order derivative of the result of accumulation of luminance readings diagonally for images of optic nerve head with blurred boundaries is 2 times smaller than for images of optic nerve head with clear boundaries. Conclusions. Тhe presented method can be used to create expert systems which allow to automate the process of morphological description of the optic nerve head border from the fundus images and also can partially solve the diagnostic problem. Since the disappearance of the clarity of the optic nerve head borders and the appearance of their blurring are the main diagnostic criterions for various types of pathology this method can be used to create medical expert systems and software for the fundus images processing.

About the Authors

E. G. Tanaeva
Volga State University of Technology; Republican G.I. Grigoriev Ophthalmologic Hospital
Russian Federation

Tanaeva Elena G. postgraduate, ophthalmologist

Lenin sq., 3, Yoshkar-Ola, 424000

Proletarskaya str., 68А, Yoshkar-Ola, 424000



R. G. Khafizov
Volga State University of Technology
Russian Federation

Khafizov Rinat G. MD, professor 

Lenin sq., 3, Yoshkar-Ola, 424000



References

1. Кацнельсон Л.А., Лысенко В.С., Балишанская Т.И. Клинический атлас патологии глазного дна. М., 1997. 152 с. [Katsnelson L.A., Lysenko V.S., Balishanskaya T.I. Clinical Atlas of Eye Fundus Pathology. Moscow, 1997. 152 p. (In Russ.)]

2. Хафизов Р.Г., Хафизов Д.Г., Танаева Е.Г. Алгоритм оценки параметров и про слеживания сосудов на изображениях глазного дна. Информационно-управляющие системы. 2017; 1:102–105. [Khafizov R.G., Khafizov D.G., Tanaeva E.G. Algorithm of parameters estimate and of fundus images vessels tracking. Informatsionno upravliaiushchie sistemy. 2017;1:102–105 (In Russ.)]. DOI:10.15217/ issn1684-8853.2017.1.102

3. Косарев С.Н., Бражалович Е.Е. Исследование глазного дна в диагностической практике врача-офтальмолога: учебное пособие для врачей. Пенза, 2011. 63 с. [Kosarev S.N., Brazhalovich E.E. Ocular fundus Investigation in the diagnostic practice of an ophthalmologist (manual for physicians). Penza, 2011. 63 p. (In Russ.)]

4. Лебедев О.И., Калижникова Е.А., Яровский А.Е. Топ-лист ведения пациентов с глаукомой: офтальмоскопия. Национальный журнал Глаукома. 2014;1:35–44. [Lebedev O.I., Kalizhnikova E.A., Yarovskiy A.E. Top-list of management of patients with glaucoma: ophthalmoscopy. Natsional’nyi zhurnal glaucoma. 2014;1:35–44 (In Russ.)]

5. Theleophthalmology. (Eds) K. Yogesan, S. Kumar, L. Goldschmidt, J. Cuadros. Springer, 2006. 306 p.

6. Родин А.С., Акопян В.С., Семенова Н.С., Крылов А.С. Автоматизированный дистанционный скрининг заболеваний глазного дна. Офтальмология. 2013;10(1):4–7. [Rodin A.S., Akopyan V.S., Semenova N.S., Krylov A.S. Automated screening for retinopathy. Ophthalmology. 2013;10(1):4–7 (In Russ.)]. DOI: 10.18008/1816-5095-2013-1-4-7

7. Куроедов А.В. Офтальмоскопическая характеристика изменений диска зрительного нерва и слоя нервных волокон при глаукоме (пособие для врачей). Москва: Столичный бизнес; 2011, 48 с. [Kuroedov A.V. Ophthalmoscopic characteristics of the changes in the optic nerve and retinal nerve fiber layer in patients with glaucoma (manual for physicians). Moscow: Capital Business; 2011; 48 p. (In Russ.)]

8. Lowell J., Hunter A., Steel D., Basu A., Ryder R., Fletcher E., Kennedy L. Optic nerve head segmentation. IEEE Trans Medical Imaging. 2004;23(2):256–264. DOI: 10.1109/TMI.2003.823261

9. Li H.Q., Chutatape O. Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng. 2004;51(2):246–254. DOI: 10.1109/TBME.2003.820400

10. Rangayyan M., Zhu X., Ayres F.J., Ells A.L. Detection of the Optic Nerve Head in Fundus Images of the Retina with Gabor Filters and Phase Portrait Analysis Rangaraj. Journal of Digital Imaging, 2010;23(4):438–453.

11. Sinthanayothin C., Boyce J.F., Cook H.L., Williamson, T.H. Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol. 1999;83:902–910.

12. Yu H., Barriga E.S., Agurto C., Echegaray S., Pattichis M.S., Bauman W., Soliz P. Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets. IEEE Trans Inf Technol Biomed. 2012;16(4):644– 657. DOI: 10.1109/TITB.2012.2198668

13. Aquino M.E. Gegundez-Arias. D. Marin. Detecting the optic disc boundary in digital fundus images using morphological edge detection and feature extraction techniques. IEEE Trans Med Imag. 2010;29(11):1860–1869. DOI: 10.1109/ TMI.2010.2053042

14. Hoover A., Goldbaum M. Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imag. 2003;22(8):951–958. DOI: 10.1109/TMI.2003.815900

15. Фурман Я.А., Кравецкий А.В., Передреев А.К., Роженцов А.А., Хафизов Р.Г., Егошина И.Л., Леухин А.Н. Введение в контурный анализ: приложение к обработке изображений и сигналов. М.: Физматлит, 2003. 592 с. [Furman Ya.A., Kravetskii A.V., Peredreev A.K., Rozhentsov A.A., Khafizov R.G., Egoshina I.L., Leukhin A.N. Introduction to the contour analysis: application to image and signal processing. Moscow: Fizmatlit, 2003. 592 p. (In Russ.)]


Review

For citations:


Tanaeva E.G., Khafizov R.G. The Morphological Description Automation of the Optic Nerve Head Boundary in Digital Fundus Images. Ophthalmology in Russia. 2018;15(3):325-329. (In Russ.) https://doi.org/10.18008/1816-5095-2018-3-325-329

Views: 1044


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)