Preview

Ophthalmology in Russia

Advanced search

Ultrastructural changes of chorioretinal complex under sub-threshold laser exposure at wavelengths of 0.81 and 0.532 μm (experimental study)

https://doi.org/10.18008/1816-5095-2014-4-82-86

Abstract

Aim: To reveal ultrastructural changes of chorioretinal complex and their possible reversibility under sub-threshold laser exposure at wavelengths of 0.81 and 0.532 μm in 1, 8 and 30 days. Methods: Experimental study was performed on 16 chinchilla rabbits (32 eyes) using laser at wavelengths of 0.532 and 0.81 μm in CW, micropulse, and transpupillary thermotherapy modes. Transmission electron microscope EM-10C (Opton, Oberkochen, Germany) was used to perform ultrastructural study of retina following laser exposure. Results: In a day after sub-threshold laser exposure, ultrastructural changes were mainly detected in retinal pigment epithelium (RPE), choriocapillaries, and photoreceptors. In 8 days, intracellular regeneration of RPE and partial restoration of choriocapillary blood flow and RPE macrophages were observed. In 30 days, RPE morphology, the number and the structure of photoreceptor outer segments were re-established. Mitochondria of photoreceptor inner segments regenerated as well. Conclusion: Ultrastructural changes of chorioretinal complex following sub-threshold laser radiation were reversible. Intracellular regeneration provided almost complete recovery of chorioretinal complex structure by day 30.

About the Authors

N. A. Fedoruk
Experience Scientific-Research Institute of Eye Diseases of the Russian Academy of Medical Sciences, 11A, Rossolimo street, Moscow, 119021, Russian Federation
Russian Federation


A. A. Fedorov
Experience Scientific-Research Institute of Eye Diseases of the Russian Academy of Medical Sciences, 11A, Rossolimo street, Moscow, 119021, Russian Federation
Russian Federation


A. V. Bolshunov
Experience Scientific-Research Institute of Eye Diseases of the Russian Academy of Medical Sciences, 11A, Rossolimo street, Moscow, 119021, Russian Federation
Russian Federation


References

1. Fine et al. Subretinal neovascularisation developing after prophylactic argon laser photocoagulation of atrophic macular scars. Amer. J. Ophthal. 1976; 82 (3):352‑357.

2. Han D., Mieler W. Submacular fibrosis after photocoagulation for diabetic macular edema. Am. J. Ophthalmol. 1992;113: 513‑21.

3. Ishiko S., Ogasawara H. et al. Tye use of scanning laser ophthalmoscope microperimetry to detect visual impairment caused by macular photocoagulation. Ophthalmic. Surg. Lasers. 1998; 29: 95‑98.

4. Lewen R. Subretinal neovascularization complicating laser photocoagulation of diabetic maculopathy. Ophthalmic. Surg. 1988; 19: 734‑37.

5. Lewis H, Schachat A. et al. Choroidal neovascularization after laser photocoagulation for diabetic macular edema. Ophthalmol. 1990; 97: 503

6. Lovestam-Adrian M., Agardh E. Photocoagulation of diabetic macular oedema — complications and visual outcome. Act. Ophthalmol. Scand. 2000;78 (6):667‑671.

7. Mills P. Preretinal macular fibrosis. Trans.Ophthal.Soc. U. K. 1980; 99 (1): 50‑53.

8. Schatz H., Madeira D. et al. Progressive enlargement of laser scars following grid laser photocoagulation for diffuse diabetic macular edema. Arch. Ophthalmol. 1991; 109: 1549‑51.

9. Varley M., Frank E. et al. Subretinal neovascularization after focal argon laser for diabetic macular edema. Ophthalmol. 1988; 95: 567‑73.

10. Brinkmann R., Birngruber R. Selective retina therapy (SRT). Med. Phys. 2007;17 (1): 6‑22.

11. Mainster M. Decreasing retinal photocoagulation damage: principles and techniques. Semin. in Ophthalmol. 1999; 14 (4): 200‑9.

12. Roider J., Brinkmann R. et al. Subthreshold (retinal pigment epithelium) photocoagulation in macular diseases: a pilot study. Br. J. Ophthalmol. 2000; 84: 40‑47.

13. Vujosevic S., Martini F., Convento E. et al. Subthreshold laser therapy for diabetic macular edema: metabolic and safety issues. Curr Med Chem. 2013; 20 (26): 3267‑71.

14. Mirzabekova K. A. [Clinical and technological features of laser treatment for diabetic retinopathy in ametropia]. Klinicheskie i tehnologicheskie osobennosti lazernogo lechenija diabeticheskoj retinopatii pri ametropijah: Dis.…kand. med. nauk. — M., 2004 (In Russ).

15. Chen S. N., Hwang J. F. et al. Subthreshold diode micropulse photocoagulation for the treatment of chronic central serous chorioretinopathy with juxtafoveal leakage. Ophthalmol. 2008; 115 (12):2229‑34.

16. Dorin G. Subthreshold and micropulse diode laser photocoagulation. Semin. in Ophthalmol. 2003; 18 (3): 147‑153.

17. Elsner H., Porksen E. et al. Selective retina therapy in patients with CSCh. Graefes. Arch. Clin. Exp. Ophthalmol. 2006; 244 (12): 1638‑45.

18. Sivaprasad S., Dorin G. Subthreshold diode laser micropulse photocoagulation for the treatment of diabetic macular edema. Expert Rev Med Devices. 2012;9 (2): 189‑19.

19. Pavlova E. S. [Sub-threshold argon laser photocoagulation of the retina in the treatment of focal and diffuse diabetic maculopathy with nonproliferative diabetic retinopathy]. Subporogovaja argonovaja lazernaja koaguljacija setchatki v lechenii ochagovoj i diffuznoj diabeticheskoj makulopatii pri neproliferativnoj diabeticheskoj retinopatii: Dis.…kand. med. nauk. — M., 2004 (In Russ).

20. Akduman L., Olk R. Subthreshold modified grid diode laser photocoagulation in diffuse diabetic ocular edema. Ophthalmic surg. and lasers. 1999; 30 (9):706‑714.

21. Olk R., Akduman L. Minimal intensity diode laser (810 nanometer) photocoagulation (MIP) for diffuse diabetic macular edema (DDME). Semin. in Ophthalmol. 2001; 16 (1): 25‑30.

22. Mainster M., Reichel E. Transpupillary thermotherapy for age-related macular degeneration: long-pulse photocoagulation, apoptosis, and heat shock proteins. Ophthalmic. Surg. Lasers. 2000; 31: 359‑373.

23. Mainster M., Reichel E. Transpupillary thermotherapy for age-related macular degeneration: Principles and techniques. Semin.Ophthalmol. 2001; 16 (2): 55‑59.

24. Roider J., Michaud N. et al. Microcoagulation of the fundus. Experimental results of repeated laser pulse exposure. Fortschr Ophthalmol. 1991; 88 (5): 473‑6.

25. Framme C., Alt C. et al. Selective RPE laser treatment with a scanned cw-laser beam in rabbits. Ophthalmologe. 2005; 102 (5): 491‑6.

26. Oosterhuis J., Journee-de Korver J. et al. Transpupillary thermotherapy in choroidal melanomas. Arch. Ophthalmol. 1995; 113: 315‑321.

27. Reichel E., Berocal A. et al. Transpupillary thermotherapy of occult subfoveal choroidal neovascularization in patients with age-related macular degeneration.Ophthalmol. 1999; 106: 1908‑1914.


Review

For citations:


Fedoruk N.A., Fedorov A.A., Bolshunov A.V. Ultrastructural changes of chorioretinal complex under sub-threshold laser exposure at wavelengths of 0.81 and 0.532 μm (experimental study). Ophthalmology in Russia. 2014;11(4):82-86. https://doi.org/10.18008/1816-5095-2014-4-82-86

Views: 912


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)