Preview

Ophthalmology in Russia

Advanced search

The Microcirculatiory Changes of the Optic Nerve Disc in Patients with Normal Tension Glaucoma in Comparison High Tension Glaucoma

https://doi.org/10.18008/1816-5095-2025-2-354-359

Abstract

Normal tension glaucoma (NTG) is one of the difficult-to-diagnose clinical forms of primary open-angle glaucoma (POAG). One of the important links in the pathogenesis of this pathology is a violation of the blood supply to the optic nerve and retina.

Purpose. Comparitive study using optical coherence tomography with angiography (OCTA), indicators of vessel density of the optic nerve head (ONH) in patients with newly diagnosed NTG and hypertensive form of POAG. The material was based on the data of 65 patients (65 eyes) with newly diagnosed NTG, 88 patients (88 eyes) with a hypertensive form of POAG and 50 healthy people without glaucoma (50 eyes) aged 45 to 65 years at the Eye Microsurgery Department in Hospital 8 (Ufa). All subjects underwent an ophthalmological examination, including OCTA of the optic nerve head with measurement of vessel density using the Angio Disc 4.5×4.5 mm protocol on the Optovue XR Avanti device with the AngioVue function (Optovue, USA). According to the results of the study, in patients with the initial stage of NTG, a decrease in the vessel density of the ONH was revealed in comparison with healthy individuals. In the advanced stage NTG the vessel density of the peripapillary region was reduced in all sectors of the ONH and correlated with the thickness of the RNFL in the upper sector (r = 0.404, p < 0.05). In patients with POAG, compared with NTG, more pronounced changes in the microcirculation of the ONH were observed in both stages of the disease. The vessel density of the peripapillary region correlated with the thickness of the retina in the upper sector at the early stage (r = 0.324, p < 0.05), in the lower sector — in stages I and II of the disease (r = 0.322, p < 0.05 and r = 0.316, p < 0.05, respectively).

Conclusion. The OCTA of the ONH makes possible to detect microcirculatory changes at an early stage of the disease in patients with the hypertensive form of primary open-angle glaucoma and in patients with normal tension glaucoma.

About the Authors

A. Sh. Zagidullina
Bashkir State Medical University
Russian Federation

Zagidullina Aygul Sh. MD, Associate Professor, Professor of the Ophthalmology Department 

Lenina str., 3, Ufa, 450008



A. I. Arslanova
Bashkir State Medical University; City Clinical Hospital No. 8
Russian Federation

Arslanova Aygul I. postgraduate

Lenina str., 3, Ufa, 450008

40 let Oktyabrya str., Ufa, 450112



V. U. Galimova
Bashkir State Medical University
Russian Federation

Galimova Venera U. MD, Professor of the Ophthalmology Department 

Lenina str., 3, Ufa, 450008



A. A. Aleksandrov
City Clinical Hospital No. 8
Russian Federation

Aleksandrov Arkady A. PhD, head of Microsurgery Department 

40 let Oktyabrya str., Ufa, 450112



References

1. Jensen PK, Bek T. Eye Microcirculation. In: Clinically Applied Microcirculation Research. Routledge; 2019:191–200.

2. Tripathi S, Ariga M, Srinivasan MM. Ocular blood flow in glaucoma. TNOA J Ophthal Sci Res. 2020;58(3):180. doi: 10.4103/tjosr.tjosr_81_20.

3. Bayraktar S, Ipek A, Takmaz T, Yildiz Tasci Y, Gezer MC. Ocular blood flow and choroidal thickness in ocular hypertension. Int Ophthalmol. 2022;1:1–2. doi: 10.1007/s10792‑021‑02123‑2.

4. Tiwari US, Singh M, Aishwarya A, Gupta A, Chhabra K. Comparison of flow velocity in ophthalmic artery between glaucomatous and normal subjects. Roman J Ophthalmol. 2019;63(4):346. doi: 10.22336/rjo.2019.54

5. Aghsaei Fard M, Ritch R. Optical coherence tomography angiography in glaucoma. Ann Transl Med. 2020 Sep;8(18):1204. doi: 10.21037/atm‑20‑2828.

6. Scripsema NK, Garcia PM, Bavier RD, Chui TYP, Krawitz BD, Mo S, Agemy SA, Xu L, Lin YB, Panarelli JF, Sidoti PA, Tsai JC, Rosen RB; Optical Coherence Tomography Angiography Analysis of Perfused Peripapillary Capillaries in Primary Open‑Angle Glaucoma and Normal‑Tension Glaucoma. Invest. Ophthalmol. Vis. Sci. 2016;57(9):OCT611–OCT620. doi: 10.1167/iovs.15‑18945.

7. Xu, H, Zhai, R, Zong, Y. Comparison of retinal microvascular changes in eyes with high‑tension glaucoma or normal‑tension glaucoma: a quantitative optic coherence tomography angiographic study. Graefes Arch Clin Exp Ophthalmol 2018;256:z179– 1186. doi: 10.1007/s00417‑018‑3930‑z.

8. Bojikian KD, Chen CL, Wen JC Optic disc perfusion in primary open angle and normal tension glaucoma eyes using optical coherence tomography‑based microangiography. PLoS One. 2016;11:e0154691.

9. Yarmohammadi A, Zangwill LM, Diniz‑Filho A, Suh MH, Manalastas PI, Fatehee N, Yousefi S, Belghith A, Saunders LJ, Medeiros FA, Huang D, Weinreb RN. Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT451– 459. doi: 10.1167/iovs.15‑18944.

10. Chen HS, Liu CH, Wu WC, Tseng HJ, Lee YS. Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. Invest Ophthalmol Vis Sci. 2017 Jul 1;58(9):3637– 3645. doi: 10.1167/iovs.17‑21846.

11. Lee EJ, Kim TW, Kim JA, Kim JA. Parapapillary deep‑layer microvasculature dropout in primary open‑angle glaucoma eyes with a parapapillary gamma‑zone. Invest Ophthalmol Vis Sci. 2017;58:5673e5680.

12. Wu J, Moghimi S, Nishida T Association of macular OCT and OCTA parameters with visual acuity in glaucoma British Journal of Ophthalmology Published Online First: 09 September 2022. doi: 10.1136/bjo‑2022‑321460.

13. Manalastas P.I.C., Zangwill LM, Daga FB, Christopher MA, Saunders LJ, Shoji T, Akagi T, Penteado RC, Yarmohammadi A, Suh MH, Medeiros FA, Weinreb RN. The Association Between Macula and ONH Optical Coherence Tomography Angiography (OCT‑A) Vessel Densities in Glaucoma, Glaucoma Suspect, and Healthy Eyes. J Glaucoma. 2018 Mar;27(3):227–232. doi: 10.1097/IJG.0000000000000862.

14. Holló G. Relationship between optical coherence tomography sector peripapillary angioflow‑density and Octopus visual field cluster mean defect values. PLoS One. 2017 Feb 2;12(2):e0171541. doi: 10.1371/journal.pone.0171541.

15. Sakaguchi K, Higashide T, Udagawa S, Ohkubo S, Sugiyama K. Comparison of Sectoral Structure‑Function Relationships in Glaucoma: Vessel Density Versus Thickness in the Peripapillary Retinal Nerve Fiber Layer. Invest Ophthalmol Vis Sci. 2017 Oct 1;58(12):5251–5262. doi: 10.1167/iovs.17‑21955.


Review

For citations:


Zagidullina A.Sh., Arslanova A.I., Galimova V.U., Aleksandrov A.A. The Microcirculatiory Changes of the Optic Nerve Disc in Patients with Normal Tension Glaucoma in Comparison High Tension Glaucoma. Ophthalmology in Russia. 2025;22(2):354-359. (In Russ.) https://doi.org/10.18008/1816-5095-2025-2-354-359

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)