OCT angiography and Color Doppler Imaging in the study of hemoperfusion in the retina and optic nerve in POAG
https://doi.org/10.18008/1816-5095-2016-2-102-110
Abstract
Purpose: To evaluate the hemoperfusion of Optic Nerve Disk (OND), peripapillary and macular areas, and retrobulbar blood flow in patients with primary open-angle glaucoma using optical coherence tomography with angiography (OCT-A) and Сolor Doppler Imaging (CDI).
Patients and Methods: 65 eyes of patients with primary open angle glaucoma (POAG) and 22 eyes of age-matched healthy subjects were examined using the SD-OCT-А (RtVue xR Avanti with the AngioVue software). Retinal Thickness and Angio Flow Density (AFD) were measured. AFD Disc and Peripapillary Flow Density were measured in OND and in peripapillary area. AFD Retina were evaluated in Macula inсluding Fovea- and Parafovea regions (superficial and deep) of the inner retinal layers. Ophthalmic Artery (OA), Central Retinal Artery (CRA), Posterior short Ciliary Arteries (PCA), Central Retinal Vein (CRV) and Vortex Vein (VV) were measured by CDI. Statistical analysis was performed using SPSS version 21 and MASS library of language R. The value of each diagnostic indicator (z-value) was calculated with the Wilcoxon-Mann-Whitney test and the area under the receiver operating characteristic curve (AUC).
Results: Both OCT-A and CDI indicators were reduced in glaucoma compared to healthy eyes. The following indicators had the largest AUC and diagnostic value (z-value) to discriminate the early glaucoma from normal eyes: AFD Retina Superficial Whole En Face (z = 3,83, p<0,0001; AUC 0,8 (0,69‑0,90), AFD Retina Deep Whole En Face (z = 3,31, p = 0,0007; AUC 0,76 (0,64‑0,88), Peripapillary Vessel Density (z = 3,2, p = 0,001; AUC 0,75 (0,63‑0,87), end-diastolic flow velocity in AO (z = 3,03, p = 0,002; AUC 0,74 (0,61‑0,86) and in TPCA (z = 2,78, p = 0,005; AUC 0,72 (0,58‑0,86); and to discriminate the early glaucoma from the advanced and far advanced stages: AFD Disc Peripapillary Inferior Temporalis (z = 5,61, p<0,0001; AUC 0,94 (0,86‑1,0) and the mean flow velocity in the CRA (z = 4,16, p<0.0001; AUC 0,81 (0,69‑0,92).
Conclusion: The results revealed a deficit of hemoperfusion in ONH and peripapillary and macular areas measured by OCT-A in glaucoma. CDI provides the additional information of a blood flow in the eye leading for better understanding of glaucoma pathogenesis. The both methods complement each other in early glaucoma detection and monitoring.
About the Authors
N. I. KuryshevaRussian Federation
M. D., Professor, Head of the Diagnostic Department of the Ophthalmological Center of the Federal Medical and Biological Agency, 15 Gamalei st., 123098, Moscow, Russian Federation of Russia
E. V. Maslova
Russian Federation
ophthalmologist in the Diagnostic Department of the Ophthalmological Center of the Federal Medical and Biological Agency, 15 Gamalei st., 123098, Moscow, Russian Federation
A. V. Trubilina
Russian Federation
intern in the Department of Ophthalmology of the Federal State Budget Scientific institutions of additional professional education Professional Development Institute of the Federal Medical-Biological Agency of Russia, 15 Gamalei
st., 123098, Moscow, Russian Federation
A. V. Fomin
Russian Federation
scientific consultant. Federal State Scientific Institution «Institute of Eye Diseases.» Rossolimo, 11A, B, 119021, Moscow, Russian Federation
References
1. Hayreh S. S. Blood flow in the optic head andfactors that may influence it. Prog Retin Eye Res. 2001;20 (5):595‑624.
2. Grieshaber M. C., Flammer J. Blood flow in glaucoma. Curr Opin Ophthalmol. 2005;16:79‑83.
3. Rusia D., Harris A., Pernic A., et al. Feasibility of creating a normative database of colour doppler imaging parameters in glaucomatous eyes and controls (Review). Br J of Ophthalmol. 2010;95 (9):1193‑1198.
4. Hwang J., Konduru R., Zhang X., Tan O., Francis B., Varma R., Sehi M., Greenfield D., Sadda S., Huang D. Relationship among Visual Field, Blood Flow, and Neural Structure Measurements in Glaucoma. Invest Ophthalmol Vis Sci. 2012;53:3020‑3026.
5. Wang Y., Bower D., Izatt J., Tan O., Huang D. Retinal blood flow measurement by circumpapillary Fourier domain Doppler optical coherence tomography. J Biomed Opt. 2008;13 (6).
6. Weinreb R. N., Harris A. Ocular Blood Flow in Glaucoma: Consensus Series 6. The Netherlands. Kugler Publications; 2009.
7. Jonas J., et al. Optic disc morfometry correlated with confocal laser scanning Doppler flowmetry measurements in normal-pressure glaucoma. J. Glaucoma 2003;12:260‑265.
8. Kawasaki R., Wang J. J., Rochtchina E., Lee A. J., Wong T. Y., Mitchell P. Retinal vessel caliber is associated with the 10‑year incidence of glaucoma: the Blue Mountains Eye Study. Ophthalmology; 2013;120:84‑90.
9. Yaoeda K., Shirakashi M., et al. Relationship between optic nerve head circulation and visual field loss in glaucoma. Acta Ophthalmol Scand, 2003;81:253.
10. Harris A., Kagemann L., Chung H. The use of dye dilution curve analysis in the quatification of indocyanin green angiograms of the human choroid. Ophthalmic imaging and diagnostics 1998;11:331‑337.
11. Ben-Zion I., Harris A., et al. An updated review of methods for human retinal oximetry measurements and current applications. Harefuah 2008;147:812‑817, 836.
12. Stalmans I., Vandewalle E., Anderson D. R., Costa V. P., Frenkel R. E., et al. Use of colour Doppler imaging in ocular blood flow research. Acta Ophthalmol. 2011;89:609‑630.
13. Курышева Н. И. Глазная гемоперфузия и глаукома. — М.: ГРИНЛАЙТ; 2014, 128 с.
14. Tokayer J., Jia Y., Dhalla A. H., Huang D. Blood flow velocity quantification using split- spectrum amplitude-decorrelation angiography with optical coherence tomography. Biomed Opt Express 2013;4:1909‑1924.
15. Jia Y., Wei E., Wang X., et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 2014;121:1322‑1332.
16. Pechauer A., Liu L., Gao S., Jian C., Huang D. Optical coherence tomography angiography of peripapillary retinal blood flow response to hyperoxia. Invest Ophthalmol Vis Sci. 2015;56:3287‑3291.
17. Liu L., Jia Y., Takusagawa H. L., Morrison J. C., Huang D. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma JAMA Ophthalmol. 2015;133 (9):1045‑1052.
18. Wang Y., Fawzi A. A., Varma R., et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve diseases. Invest Ophthalmol Vis Sci 2015;52:840‑845.
19. Kurysheva N. I., Ardzhevnishvili T. D., Kiseleva T. N., Fomin A. V. [Choroid in glaucoma: the results of research by optical coherence tomography] Khorioideya pri glaukome: rezul’taty issledovaniya metodom opticheskoi kogerentnoi tomografii. [Glaucoma]. Glaukoma. 2013;4:73‑83. (In Russ.)
20. Kurysheva N. I., Kiseleva T. N., Irtegova E. Yu. [Features of venous blood flow of eyes with primary open-angle glaucoma.] Osobennosti venoznogo krovotoka glaza pri pervichnoy otkrytougol’noy glaukome. [Glaucoma.] Glaukoma. 2012;4:24‑31. (In Russ.)
21. Kurysheva N. I., Parshunina O. A., Maslova E. V., Kiseleva T. N., Lagutin M. B., [Diagnostic significance of the research of ocular blood flow in early detection of primary open-angle glaucoma.] Diagnosticheskaya znachimost’ issledovaniya glaznogo krovotoka v rannem vyyavlenii pervichnoy otkrytougol’noy glaukome. [Glaucoma]. Glaukoma. 2015;3 (14):19‑28. (In Russ.)
22. Spaide R., Klancic J., Cooney M. Retinal vascular layers imaged by fluorescein angiography. JAMA Ophthalmol.2015; 133: 45‑50.
23. Savastano M., Lumbroso B., Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;35,11: 2196‑2203.
24. Snodderly D., Weinhaus R., Choi J. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J Neurosci. 1992;12: 1169‑1193.
25. Flammer J, Konieczka K. Retinal venous pressure: the role of endothelin. EPMA J. 2015; 6:21
26. Kurysheva N. I., Kiseleva T. N., Ryzhkov P. K., Fomin A. V., Khodak N. A., Ardzhevnishvili T. D. [Influence of venous blood flow of the eye on the condition of the center of retinal ganglion cells in patients with primary open-angle glaucoma.] Vliyanie venoznogo krovotoka glaza na sostoyanie kompleksa ganglioznykh kletok setchatki u bol’nykh pervichnoy otkrytougol’noy glaukomoy. [Ophthalmology]. Oftal’mologiya. 2013;1:26‑31. (In Russ.)
Review
For citations:
Kurysheva N.I., Maslova E.V., Trubilina A.V., Fomin A.V. OCT angiography and Color Doppler Imaging in the study of hemoperfusion in the retina and optic nerve in POAG. Ophthalmology in Russia. 2016;13(2):102-110. (In Russ.) https://doi.org/10.18008/1816-5095-2016-2-102-110