COMPARATIVE ANALYSIS OF AUTOMATIC LAYER-BY-LAYER SEGMENTATION USING OPTICAL COHERENT TOMOGRAPHS DRI OCT AND RETINASCAN-3000 IN HEALTHY PATIENTS
https://doi.org/10.18008/1816-5095-2017-2-147-154
Abstract
The aim was to determine different possibilities and the operating principle of modern optical coherent tomographs OCT RETINASCAN-3000 and DRI OCT TRITON in automatic layer-by-layer segmentation of the retina and perioretinal structures.
Methods. The study involved 31 patients (31 eyes) with no retinal pathology in the macular area. Of these, there were 13 men, 18 women. The average age of the patients was 55.8±3.65 years. Each patient was followed by a layered automatic structuring of the central retina with the help of RetinaScan-3000 (Nidek Technologies) (1st group, n = 31) and DRI OCT Triton (Topcon Japan) (2nd group, n = 31) of the right eye only. The OST device RetinaScan-3000 used the mode macula multi cross 6 mm, the DRI OCT Triton used the 5 line cross 6 mm mode.
Results: The difference in the automatic layer-by-layer segmentation between the optical coherent tomographs DRI OCT TRITON and OCT RETINASCAN-3000 is, first of all, in the unequal coverage of the retina layers and the preand subretinal space and the number of automatically layered zones. For example, OCT RETINASCAN-3000 (SD-OCT) suggests the separation of the transverse optical section of the structures of the posterior segment of the eyeball into 5 structural zones when, as DRI OCT TRITON in (SSOCT), further clearly isolates the preretinal structures and the choroid, delineating the border of the sclero-choroidal Articulation. The DRI OCT Triton device in the SS-OCT system allowed for a more complete differentiation from the position of layered delimitation of the retina covering 6 retinal zones to obtain digital values for coverage of 5 layers on RetinaScan-3000 (SD OCT).
Conclutions: The DRI OCT Triton device with SS-OCT technology has more possibilities for topical diagnostics of the posterior eyeball structures in the autonomous mode relative to the Retinascan-3000 with SD-OCT technology.
About the Authors
M. M. BikbovRussian Federation
Bikbov Mukharram M. — рrofessor, PhD, MD, director.
Pushkin str. 90, Ufa, 450008
R. R. Fayzrakhmanov
Russian Federation
Fayzrakhmanov Rinat R. — MD, The Head of the Vitreoretinal and Laser Surgery Department.
Pushkin str. 90, Ufa, 450008
T. R. Gil’manshin
Russian Federation
Gil’manshin Timur R. — PhD, Researcher of the Vitreoretinal and Laser Surgery Department. MD.
Pushkin str. 90, Ufa, 450008
R. M. Zainullin
Russian Federation
Zainullin Rinat M. — Researcher of the Vitreoretinal and Laser Surgery Department.
Pushkin str. 90, Ufa 450008
R. I. Hikmatullin
Russian Federation
Hikmatullin Renat I. — Junior Researcher of the Corneal and Refractive Surgery Department.
Pushkin str. 90, Ufa, 450008
M. R. Kalanov
Russian Federation
Kalanov Marat R. — Researcher of the Vitreoretinal and Laser Surgery Department.
Pushkin str. 90, Ufa, 450008
References
1. Serebrjakov V.A., Bojko Je.V., Jan A.V.; [Coherence tomography in the diagnosis of ophthalmic diseases]. M.: Medicina; 2013. (in Russ.).
2. Shpak A.A., Ogorodnikova S.N. [Three‑dimensional optical coherence tomography of high resolution]. Trekhmernaya opticheskaya kogerentnaya tomografiya vysokogo razresheniya. [Ophthalmosurgery]. Oftal’mokhirurgiya. 2007;3:61‑65 (in Russ.).
3. Fajzrahmanov R.R., Zainullin R.M., Gil’manshin T.R., Jarmuhametova A.L. [Mapping the foveolzone of the retina in idiopathic macular rupture]. Kartirovanie foveoljarnoj zony setchatki pri idiopaticheskom makuljarnom razryve. [Annals of Orenburg State University]. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2014;12(173): 322‑324. (in Russ.)
4. Bikbov M.M., Fajzrahmanov R.R., Gil’manshin T.R., Arslangareeva I.I. [Morphological changes of the macular zone in postthrombotic maculopathy after intravitreal dexamethasone implantation (in the case of 5 clinical cases)]. Morfologicheskie izmeneniya makulyarnoy zony pri posttromboticheskoy makulopatii posle intravitreal’nogo vvedeniya implanta s deksametazonom (na primere 5 klinicheskikh sluchaev). [Ophthalmology journal]. Oftal’mologicheskie vedomosti. 2016;9(4):90‑97. (in Russ.) doi: 10.17816/OV9490‑97
5. Flores‑Moreno I, Arias‑Barquet L, Rubio‑Caso MJ, Ruiz‑Moreno JM, Duker JS, Caminal JM. En face swept‑source optical coherence tomography in neovascular age‑related macular degeneration. Br J Ophthalmol. 2015;99(9):1260‑7. doi: 10.1136/bjophthalmol‑2014‑306422
6. Shpak A.A. [Spectral optical coherence tomography of high resolution] M.: Medicina; 2014 (in Russ.).
7. Shpak A.A. [New nomenclature of optical coherent tomography] Novaya nomenklatura opticheskoy kogerentnoy tomografii. [Ophthalmosurgery]. Oftal’mokhirurgiya. 2015;3:80–82 (in Russ.).
8. Khan H., Asrar A., Ikram B., Asrar M. Comparison of Image Quality between Swept Source and Spectral Domain OCT in Media Opacification. Pakistan Journal of Ophthalmology. 2016;32(3):128‑133.
9. Lim LS, Cheung G, Lee SY. Comparison of spectral domain and swept‑source optical coherence tomography in pathological myopia. Eye. 2014;28(4):488‑91. doi: 10.1038/eye.2013.308
10. Figurska M1, Robaszkiewicz J, Wierzbowska J. Optical coherence tomography in imaging of macular diseases. Klin Oczna. 2010;112(4‑6):138‑46.
11. Sull AC, Vuong LN, Price LL, et al. Comparison of spectral/ Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina. 2010;30:235–45. doi: 10.1097/IAE.0b013e3181bd2c3b
12. Huang Y, Zhang Q, Thorell MR, et al. Swept‑source OCT angiography of the retinal vasculature using intensity differentiation‑based optical microangiography algorithms. Ophthal Surg Lasers Imaging Retina. 2014;45:382–389. doi: 10.3928/23258160‑20140909‑08
13. Miller A.R., Roisman L., Zhang Q., et al. Comparison Between Spectral‑Domain and Swept‑Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization. Investigative Ophthalmology & Visual Science. 2017;58:1499‑1505. doi:10.1167/iovs.16‑20969
14. Abreu‑González R., Gallego‑Pinazo R., Dolz‑Marco Ret al. Swept Source OCT versus Spectral Domain OCT: Myths and realities. Guajardoe Archivos de la Sociedad Española de Oftalmología (English Edition). 2016;91(10):459‑460. Doi 10.1016/j.oftale.2016.06.004
15. Lavinsky F, Lavinsky D. Novel perspectives on swept‑source optical coherence tomography. International Journal of Retina and Vitreous. 2016;2:2‑11. doi 10.1186/s40942‑016‑0050‑y
Review
For citations:
Bikbov M.M., Fayzrakhmanov R.R., Gil’manshin T.R., Zainullin R.M., Hikmatullin R.I., Kalanov M.R. COMPARATIVE ANALYSIS OF AUTOMATIC LAYER-BY-LAYER SEGMENTATION USING OPTICAL COHERENT TOMOGRAPHS DRI OCT AND RETINASCAN-3000 IN HEALTHY PATIENTS. Ophthalmology in Russia. 2017;14(2):147-154. (In Russ.) https://doi.org/10.18008/1816-5095-2017-2-147-154