Preview

Ophthalmology in Russia

Advanced search

COMPARATIVE ANALYSIS OF AUTOMATIC LAYER-BY-LAYER SEGMENTATION USING OPTICAL COHERENT TOMOGRAPHS DRI OCT AND RETINASCAN-3000 IN HEALTHY PATIENTS

https://doi.org/10.18008/1816-5095-2017-2-147-154

Abstract

The aim was to determine different possibilities and the operating principle of modern optical coherent tomographs OCT RETINASCAN-3000 and  DRI OCT TRITON in automatic layer-by-layer segmentation of the  retina  and  perioretinal  structures. 

Methods. The study involved 31 patients (31  eyes) with no retinal pathology in the  macular area. Of these, there were  13 men,  18 women.  The average age  of the  patients was  55.8±3.65  years. Each patient  was  followed by a layered  automatic structuring of the  central  retina  with the help of RetinaScan-3000 (Nidek Technologies)  (1st  group,  n = 31)  and DRI OCT Triton (Topcon Japan) (2nd group,  n = 31)  of the right eye only. The OST device RetinaScan-3000 used  the  mode  macula  multi cross 6 mm,  the  DRI OCT Triton used  the  5 line cross 6 mm mode.

Results: The difference in the automatic layer-by-layer segmentation between the optical coherent tomographs DRI OCT TRITON and OCT RETINASCAN-3000 is, first of all, in the unequal coverage of the retina  layers and the preand subretinal space and the number of automatically layered zones.  For example,  OCT RETINASCAN-3000 (SD-OCT) suggests the separation of the transverse optical  section  of the  structures of the  posterior segment of the  eyeball into 5 structural zones  when,  as  DRI OCT TRITON in (SSOCT), further  clearly  isolates  the  preretinal structures  and  the  choroid,  delineating  the  border of the  sclero-choroidal Articulation. The DRI OCT Triton device in the  SS-OCT system allowed for a more  complete differentiation from the  position of layered  delimitation of the  retina  covering  6 retinal  zones  to obtain  digital values  for  coverage of 5 layers  on RetinaScan-3000 (SD OCT).

Conclutions: The DRI OCT Triton device with SS-OCT technology has  more  possibilities for topical diagnostics of the  posterior eyeball structures in the autonomous mode  relative to the Retinascan-3000 with SD-OCT technology.

About the Authors

M. M. Bikbov
Ufa Eye Research Institute
Russian Federation

Bikbov Mukharram M. — рrofessor, PhD, MD, director.

Pushkin  str. 90, Ufa, 450008



R. R. Fayzrakhmanov
Ufa Eye Research Institute
Russian Federation

Fayzrakhmanov  Rinat  R.  — MD,  The  Head  of the  Vitreoretinal  and  Laser Surgery Department.

Pushkin  str. 90, Ufa, 450008



T. R. Gil’manshin
Ufa Eye Research Institute
Russian Federation

Gil’manshin  Timur R.  —  PhD,  Researcher   of  the  Vitreoretinal   and  Laser Surgery Department. MD.

Pushkin  str. 90, Ufa, 450008



R. M. Zainullin
Ufa Eye Research Institute
Russian Federation

Zainullin   Rinat M. — Researcher of the Vitreoretinal and Laser Surgery Department.

Pushkin  str. 90, Ufa 450008



R. I. Hikmatullin
Ufa Eye Research Institute
Russian Federation

Hikmatullin  Renat I. — Junior  Researcher of the Corneal  and Refractive Surgery Department.

Pushkin  str. 90, Ufa, 450008



M. R. Kalanov
Ufa Eye Research Institute
Russian Federation

Kalanov Marat R. — Researcher of the Vitreoretinal and Laser Surgery Department.

Pushkin  str. 90, Ufa, 450008



References

1. Serebrjakov V.A., Bojko Je.V., Jan A.V.; [Coherence tomography in the diagnosis of ophthalmic diseases]. M.: Medicina; 2013. (in Russ.).

2. Shpak A.A., Ogorodnikova S.N. [Three‑dimensional optical coherence tomography of high resolution]. Trekhmernaya opticheskaya kogerentnaya tomografiya vysokogo razresheniya. [Ophthalmosurgery]. Oftal’mokhirurgiya. 2007;3:61‑65 (in Russ.).

3. Fajzrahmanov R.R., Zainullin R.M., Gil’manshin T.R., Jarmuhametova A.L. [Mapping the foveolzone of the retina in idiopathic macular rupture]. Kartirovanie foveoljarnoj zony setchatki pri idiopaticheskom makuljarnom razryve. [Annals of Orenburg State University]. Vestnik Orenburgskogo gosudarstvennogo universiteta. 2014;12(173): 322‑324. (in Russ.)

4. Bikbov M.M., Fajzrahmanov R.R., Gil’manshin T.R., Arslangareeva I.I. [Morphological changes of the macular zone in postthrombotic maculopathy after intravitreal dexamethasone implantation (in the case of 5 clinical cases)]. Morfologicheskie izmeneniya makulyarnoy zony pri posttromboticheskoy makulopatii posle intravitreal’nogo vvedeniya implanta s deksametazonom (na primere 5 klinicheskikh sluchaev). [Ophthalmology journal]. Oftal’mologicheskie vedomosti. 2016;9(4):90‑97. (in Russ.) doi: 10.17816/OV9490‑97

5. Flores‑Moreno I, Arias‑Barquet L, Rubio‑Caso MJ, Ruiz‑Moreno JM, Duker JS, Caminal JM. En face swept‑source optical coherence tomography in neovascular age‑related macular degeneration. Br J Ophthalmol. 2015;99(9):1260‑7. doi: 10.1136/bjophthalmol‑2014‑306422

6. Shpak A.A. [Spectral optical coherence tomography of high resolution] M.: Medicina; 2014 (in Russ.).

7. Shpak A.A. [New nomenclature of optical coherent tomography] Novaya nomenklatura opticheskoy kogerentnoy tomografii. [Ophthalmosurgery]. Oftal’mokhirurgiya. 2015;3:80–82 (in Russ.).

8. Khan H., Asrar A., Ikram B., Asrar M. Comparison of Image Quality between Swept Source and Spectral Domain OCT in Media Opacification. Pakistan Journal of Ophthalmology. 2016;32(3):128‑133.

9. Lim LS, Cheung G, Lee SY. Comparison of spectral domain and swept‑source optical coherence tomography in pathological myopia. Eye. 2014;28(4):488‑91. doi: 10.1038/eye.2013.308

10. Figurska M1, Robaszkiewicz J, Wierzbowska J. Optical coherence tomography in imaging of macular diseases. Klin Oczna. 2010;112(4‑6):138‑46.

11. Sull AC, Vuong LN, Price LL, et al. Comparison of spectral/ Fourier domain optical coherence tomography instruments for assessment of normal macular thickness. Retina. 2010;30:235–45. doi: 10.1097/IAE.0b013e3181bd2c3b

12. Huang Y, Zhang Q, Thorell MR, et al. Swept‑source OCT angiography of the retinal vasculature using intensity differentiation‑based optical microangiography algorithms. Ophthal Surg Lasers Imaging Retina. 2014;45:382–389. doi: 10.3928/23258160‑20140909‑08

13. Miller A.R., Roisman L., Zhang Q., et al. Comparison Between Spectral‑Domain and Swept‑Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization. Investigative Ophthalmology & Visual Science. 2017;58:1499‑1505. doi:10.1167/iovs.16‑20969

14. Abreu‑González R., Gallego‑Pinazo R., Dolz‑Marco Ret al. Swept Source OCT versus Spectral Domain OCT: Myths and realities. Guajardoe Archivos de la Sociedad Española de Oftalmología (English Edition). 2016;91(10):459‑460. Doi 10.1016/j.oftale.2016.06.004

15. Lavinsky F, Lavinsky D. Novel perspectives on swept‑source optical coherence tomography. International Journal of Retina and Vitreous. 2016;2:2‑11. doi 10.1186/s40942‑016‑0050‑y


Review

For citations:


Bikbov M.M., Fayzrakhmanov R.R., Gil’manshin T.R., Zainullin R.M., Hikmatullin R.I., Kalanov M.R. COMPARATIVE ANALYSIS OF AUTOMATIC LAYER-BY-LAYER SEGMENTATION USING OPTICAL COHERENT TOMOGRAPHS DRI OCT AND RETINASCAN-3000 IN HEALTHY PATIENTS. Ophthalmology in Russia. 2017;14(2):147-154. (In Russ.) https://doi.org/10.18008/1816-5095-2017-2-147-154

Views: 1469


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-5095 (Print)
ISSN 2500-0845 (Online)